Question
Question: Evaluate the following determinant \(\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha...
Evaluate the following determinant cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα .
Solution
In this problem, we need to evaluate the given determinant cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα . We first need to know how to evaluate a determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as, cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα×(−1)1+3−sinβ sinαcosβ cosβsinαsinβ+0+cosα×(−1)3+3cosαcosβ −sinβ cosαsinβcosβ
Again, breaking down these determinants and then simplifying the final answer, we arrive at the answer.
Complete step by step answer:
In this problem, we need to evaluate,
cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα
The cofactor of an element aij is (−1)i+jMij where, Mij is the minor of the element aij found out by removing the corresponding row and column of the element and taking the remaining determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as,
cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα×(−1)1+3−sinβ sinαcosβ cosβsinαsinβ+0+cosα×(−1)3+3cosαcosβ −sinβ cosαsinβcosβ
We now simplify the above expression and get,
cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα−sinβ sinαcosβ cosβsinαsinβ+cosαcosαcosβ −sinβ cosαsinβcosβ
We again repeat the same procedure by adding the product of an element and its co-factor along a single row or column to evaluate the remaining 2×2 determinant. We then get,
⇒cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα[−sinβ(sinαsinβ)−cosβ(sinαcosβ)]+cosα[cosαcosβcosβ−cosαsinβ(−sinβ)]
Multiplying the terms, we get,
⇒cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα[−sin2βsinα−sinαcos2β]+cosα[cosαcos2β+cosαsin2β]
Now, taking −sinα common from the first term and cosα common from the second term, we get,
⇒cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα[−sinα(sin2β+cos2β)]+cosα[cosα(cos2β+sin2β)]
We know that sin2θ+cos2θ=1 . So, the above expression becomes,
⇒cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=−sinα[−sinα]+cosα[cosα]=sin2α+cos2α
Again, using the same trigonometric identity, we get,
⇒cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα=1
Thus, we can conclude that the value of the determinant cosαcosβ −sinβ sinαcosβ cosαsinβcosβsinαsinβ−sinα0cosα is 1 .
Note: We must be thorough with the concepts of minors and cofactors. We also must keep in mind to multiply an additional −1 for the odd position terms. Evaluating a determinant is a long process, so we must remain patient and should flawlessly solve the problem.