Solveeit Logo

Question

Question: Evaluate the following determinant \(\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha...

Evaluate the following determinant cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| .

Explanation

Solution

In this problem, we need to evaluate the given determinant cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| . We first need to know how to evaluate a determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as, cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinα×(1)1+3sinβcosβ sinαcosβsinαsinβ +0+cosα×(1)3+3cosαcosβcosαsinβ sinβcosβ  \begin{aligned} & \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \times {{\left( -1 \right)}^{1+3}}\left| \begin{matrix} -\sin \beta & \cos \beta \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \\\ \end{matrix} \right|+0+\cos \alpha \times {{\left( -1 \right)}^{3+3}}\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \\\ -\sin \beta & \cos \beta \\\ \end{matrix} \right| \\\ \end{aligned}
Again, breaking down these determinants and then simplifying the final answer, we arrive at the answer.

Complete step by step answer:
In this problem, we need to evaluate,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right|
The cofactor of an element aij{{a}_{ij}} is (1)i+jMij{{\left( -1 \right)}^{i+j}}{{M}_{ij}} where, Mij{{M}_{ij}} is the minor of the element aij{{a}_{ij}} found out by removing the corresponding row and column of the element and taking the remaining determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinα×(1)1+3sinβcosβ sinαcosβsinαsinβ +0+cosα×(1)3+3cosαcosβcosαsinβ sinβcosβ  \begin{aligned} & \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \times {{\left( -1 \right)}^{1+3}}\left| \begin{matrix} -\sin \beta & \cos \beta \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \\\ \end{matrix} \right|+0+\cos \alpha \times {{\left( -1 \right)}^{3+3}}\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \\\ -\sin \beta & \cos \beta \\\ \end{matrix} \right| \\\ \end{aligned}
We now simplify the above expression and get,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinαsinβcosβ sinαcosβsinαsinβ +cosαcosαcosβcosαsinβ sinβcosβ  \begin{aligned} & \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \left| \begin{matrix} -\sin \beta & \cos \beta \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \\\ \end{matrix} \right|+\cos \alpha \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \\\ -\sin \beta & \cos \beta \\\ \end{matrix} \right| \\\ \end{aligned}
We again repeat the same procedure by adding the product of an element and its co-factor along a single row or column to evaluate the remaining 2×22\times 2 determinant. We then get,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinα[sinβ(sinαsinβ)cosβ(sinαcosβ)] +cosα[cosαcosβcosβcosαsinβ(sinβ)] \begin{aligned} & \Rightarrow \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \left[ -\sin \beta \left( \sin \alpha \sin \beta \right)-\cos \beta \left( \sin \alpha \cos \beta \right) \right] \\\ & +\cos \alpha \left[ \cos \alpha \cos \beta \cos \beta -\cos \alpha \sin \beta \left( -\sin \beta \right) \right] \\\ \end{aligned}
Multiplying the terms, we get,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinα[sin2βsinαsinαcos2β]+cosα[cosαcos2β+cosαsin2β] \begin{aligned} & \Rightarrow \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \left[ -{{\sin }^{2}}\beta \sin \alpha -\sin \alpha {{\cos }^{2}}\beta \right]+\cos \alpha \left[ \cos \alpha {{\cos }^{2}}\beta +\cos \alpha {{\sin }^{2}}\beta \right] \\\ \end{aligned}
Now, taking sinα-\sin \alpha common from the first term and cosα\cos \alpha common from the second term, we get,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinα[sinα(sin2β+cos2β)]+cosα[cosα(cos2β+sin2β)] \begin{aligned} & \Rightarrow \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \left[ -\sin \alpha \left( {{\sin }^{2}}\beta +{{\cos }^{2}}\beta \right) \right]+\cos \alpha \left[ \cos \alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right) \right] \\\ \end{aligned}
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 . So, the above expression becomes,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα  =sinα[sinα]+cosα[cosα]=sin2α+cos2α \begin{aligned} & \Rightarrow \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| \\\ & =-\sin \alpha \left[ -\sin \alpha \right]+\cos \alpha \left[ \cos \alpha \right]={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\\ \end{aligned}
Again, using the same trigonometric identity, we get,
cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα =1\Rightarrow \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right|=1
Thus, we can conclude that the value of the determinant cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| is 11 .

Note: We must be thorough with the concepts of minors and cofactors. We also must keep in mind to multiply an additional 1-1 for the odd position terms. Evaluating a determinant is a long process, so we must remain patient and should flawlessly solve the problem.