Solveeit Logo

Question

Question: Evaluate the following definite integral: \(\int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\df...

Evaluate the following definite integral: π4π4(11+sinx)dx\int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\dfrac{1}{{1 + \sin x}}} \right)dx} r.

Explanation

Solution

Hint- Rationalize the given function which needs to be integrated.

Let the given integral be I=π4π4(11+sinx)dxI = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\dfrac{1}{{1 + \sin x}}} \right)dx}
Now rationalizing the function on the RHS of the above equation, we get
I=π4π4[(11+sinx)×(1sinx1sinx)]dx=π4π4[1sinx(1+sinx)(1sinx)]dx I=π4π4[1sinx1(sinx)2]dx  I = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\left( {\dfrac{1}{{1 + \sin x}}} \right) \times \left( {\dfrac{{1 - \sin x}}{{1 - \sin x}}} \right)} \right]dx} = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{1 - \sin x}}{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}}} \right]dx} \\\ \Rightarrow I = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{1 - \sin x}}{{1 - {{\left( {\sin x} \right)}^2}}}} \right]dx} \\\
Using the identity (sinx)2+(cosx)2=11(sinx)2=(cosx)2{\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1 \Rightarrow 1 - {\left( {\sin x} \right)^2} = {\left( {\cos x} \right)^2} , we have
I=π4π4[1sinx(cosx)2]dx=π4π4[1(cosx)2sinx(cosx)(cosx)]dx\Rightarrow I = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{1 - \sin x}}{{{{\left( {\cos x} \right)}^2}}}} \right]dx = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\left( {\cos x} \right)}^2}}} - \dfrac{{\sin x}}{{\left( {\cos x} \right)\left( {\cos x} \right)}}} \right]dx} }
Since, secx=1cosx\sec x = \dfrac{1}{{\cos x}} and tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}

I=π4π4[(secx)2(tanx)(secx)]dx=π4π4(secx)2dxπ4π4(tanx)(secx)dx I=[tanx]π4π4[secx]π4π4=[tan(π4)tan(π4)][sec(π4)sec(π4)] I=[tan(π4)tan(π4)][sec(π4)sec(π4)]  \therefore I = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {{{\left( {\sec x} \right)}^2} - \left( {\tan x} \right)\left( {\sec x} \right)} \right]dx} = \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\left( {\sec x} \right)}^2}dx - \int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\tan x} \right)\left( {\sec x} \right)} dx} \\\ \Rightarrow I = \left[ {\tan x} \right]_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} - \left[ {\sec x} \right]_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} = \left[ {\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( { - \dfrac{\pi }{4}} \right)} \right] - \left[ {\sec \left( {\dfrac{\pi }{4}} \right) - \sec \left( { - \dfrac{\pi }{4}} \right)} \right] \\\ \Rightarrow I = \left[ {\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( { - \dfrac{\pi }{4}} \right)} \right] - \left[ {\sec \left( {\dfrac{\pi }{4}} \right) - \sec \left( { - \dfrac{\pi }{4}} \right)} \right] \\\

Since, we know that tan(θ)=tanθ\tan \left( { - \theta } \right) = \tan \theta and sec(θ)=secθ\sec \left( { - \theta } \right) = \sec \theta
I=[tan(π4)+tan(π4)][sec(π4)sec(π4)]=2tan(π4)\therefore I = \left[ {\tan \left( {\dfrac{\pi }{4}} \right) + \tan \left( {\dfrac{\pi }{4}} \right)} \right] - \left[ {\sec \left( {\dfrac{\pi }{4}} \right) - \sec \left( {\dfrac{\pi }{4}} \right)} \right] = 2\tan \left( {\dfrac{\pi }{4}} \right)
Also, tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1
I=2×1=2\Rightarrow I = 2 \times 1 = 2.

Note- These types of problems can be solved by rationalizing the function which needs to be integrated in order to get a function for which the formula of integration is known.