Question
Question: Evaluate the following definite integral: \(\int_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\df...
Evaluate the following definite integral: ∫−4π4π(1+sinx1)dxr.
Solution
Hint- Rationalize the given function which needs to be integrated.
Let the given integral be I=∫−4π4π(1+sinx1)dx
Now rationalizing the function on the RHS of the above equation, we get
I=∫−4π4π[(1+sinx1)×(1−sinx1−sinx)]dx=∫−4π4π[(1+sinx)(1−sinx)1−sinx]dx ⇒I=∫−4π4π[1−(sinx)21−sinx]dx
Using the identity (sinx)2+(cosx)2=1⇒1−(sinx)2=(cosx)2 , we have
⇒I=∫−4π4π[(cosx)21−sinx]dx=∫−4π4π[(cosx)21−(cosx)(cosx)sinx]dx
Since, secx=cosx1 and tanx=cosxsinx
Since, we know that tan(−θ)=tanθ and sec(−θ)=secθ
∴I=[tan(4π)+tan(4π)]−[sec(4π)−sec(4π)]=2tan(4π)
Also, tan(4π)=1
⇒I=2×1=2.
Note- These types of problems can be solved by rationalizing the function which needs to be integrated in order to get a function for which the formula of integration is known.