Solveeit Logo

Question

Question: Evaluate the following definite integral : \[\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx} \]...

Evaluate the following definite integral :
0π2cos2xdx\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx}

Explanation

Solution

Hint :- Use the formula   (cos2x=2cos2x1)\;(cos2x = 2co{s^2}x - 1)

Let I=0π2cos2xdxI = \int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx}
=0π21+cos2x2dx= \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 + \cos 2x}}{2}dx} ………………..using   (cos2x=2cos2x1)\;(cos2x = 2co{s^2}x - 1)
=120π21+cos2xdx= \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {1 + \cos 2x dx}
=12(0π21dx+0π2cos2xdx)= \dfrac{1}{2}\left( {\int\limits_0^{\dfrac{\pi }{2}} {1dx + \int\limits_0^{\dfrac{\pi }{2}} {\cos 2xdx} } } \right)
=12[x+sin2x2]0π2= \dfrac{1}{2}\left[ {x + \dfrac{{\sin 2x}}{2}} \right]_0^{\dfrac{\pi }{2}}………….as we know (cos2xdx=sin2x2)\left( {\int {\cos 2xdx = \dfrac{{\sin 2x}}{2}} } \right)
=12[(π2+sinπ2)(0+sin02)]=π4= \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{2} + \dfrac{{\sin \pi }}{2}} \right) - \left( {0 + \dfrac{{\sin 0}}{2}} \right)} \right] = \dfrac{\pi }{4}

Note :- Try to make the integral in simple form as you can apply general formula to get the result
of integration.