Solveeit Logo

Question

Question: Evaluate the following \[{{\cot }^{2}}{{30}^{o}}-2{{\cos }^{2}}{{60}^{o}}-\dfrac{3}{4}{{\sec }^{2}...

Evaluate the following
cot230o2cos260o34sec245o4sec230o{{\cot }^{2}}{{30}^{o}}-2{{\cos }^{2}}{{60}^{o}}-\dfrac{3}{4}{{\sec }^{2}}{{45}^{o}}-4{{\sec }^{2}}{{30}^{o}}

Explanation

Solution

Hint:First of all, consider the expression given in the question. Now make the table for trigonometric ratios of general angles. Now, from that find the values of cot60o,sec45o,sec30o\cot {{60}^{o}},sec{{45}^{o}},\sec {{30}^{o}} and cot30o\cot {{30}^{o}} and substitute these in the given expression to get the required answer.

Complete step-by-step answer:
In this question, we have to find the value of the expression
cot230o2cos260o34sec245o4sec230o{{\cot }^{2}}{{30}^{o}}-2{{\cos }^{2}}{{60}^{o}}-\dfrac{3}{4}{{\sec }^{2}}{{45}^{o}}-4{{\sec }^{2}}{{30}^{o}}
Let us consider the expression given in the question.
E=cot230o2cos260o34sec245o4sec230o...(i)E={{\cot }^{2}}{{30}^{o}}-2{{\cos }^{2}}{{60}^{o}}-\dfrac{3}{4}{{\sec }^{2}}{{45}^{o}}-4{{\sec }^{2}}{{30}^{o}}...\left( i \right)
Now, we have to find the values of sec45o,cos60o,sec30o\sec {{45}^{o}},\cos {{60}^{o}},\sec {{30}^{o}} and cot30o\cot {{30}^{o}}.
Let us make the table for trigonometric ratios of general angles like 0o,30o,45o,60o,90o{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}} and find the required values.

From the above table, we get, cot30o=3\cot {{30}^{o}}=\sqrt{3}. By substituting this in equation (i), we get,
E=(3)22cos260o34sec245o4sec230oE={{\left( \sqrt{3} \right)}^{2}}-2{{\cos }^{2}}{{60}^{o}}-\dfrac{3}{4}{{\sec }^{2}}{{45}^{o}}-4{{\sec }^{2}}{{30}^{o}}
Also from the above table, we get cos60o=12\cos {{60}^{o}}=\dfrac{1}{2}. By substituting this in the above equation, we get, E=(3)22(12)234sec245o4sec230oE={{\left( \sqrt{3} \right)}^{2}}-2{{\left( \dfrac{1}{2} \right)}^{2}}-\dfrac{3}{4}{{\sec }^{2}}{{45}^{o}}-4{{\sec }^{2}}{{30}^{o}}
From the table, we also get, sec45o=2\sec {{45}^{o}}=\sqrt{2}. By substituting this in the above equation, we get,
E=(3)22(12)234(2)24sec230oE={{\left( \sqrt{3} \right)}^{2}}-2{{\left( \dfrac{1}{2} \right)}^{2}}-\dfrac{3}{4}{{\left( \sqrt{2} \right)}^{2}}-4{{\sec }^{2}}{{30}^{o}}
From the table, we also get, sec30o=23\sec {{30}^{o}}=\dfrac{2}{\sqrt{3}}. By substituting this in the above equation, we get,
E=(3)22(12)234(2)24(23)2E={{\left( \sqrt{3} \right)}^{2}}-2{{\left( \dfrac{1}{2} \right)}^{2}}-\dfrac{3}{4}{{\left( \sqrt{2} \right)}^{2}}-4{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}
By simplifying the above equation, we get,
E=32(14)34(2)4(43)E=3-2\left( \dfrac{1}{4} \right)-\dfrac{3}{4}\left( 2 \right)-4\left( \dfrac{4}{3} \right)
E=32464163E=3-\dfrac{2}{4}-\dfrac{6}{4}-\dfrac{16}{3}
E=311232163E=\dfrac{3}{1}-\dfrac{1}{2}-\dfrac{3}{2}-\dfrac{16}{3}
E=1839326E=\dfrac{18-3-9-32}{6}
E=18446E=\dfrac{18-44}{6}
E=266E=\dfrac{-26}{6}
E=133E=\dfrac{-13}{3}
Hence, we get the value of the expression cot230o2cos260o34sec245o4sec230o{{\cot }^{2}}{{30}^{o}}-2{{\cos }^{2}}{{60}^{o}}-\dfrac{3}{4}{{\sec }^{2}}{{45}^{o}}-4{{\sec }^{2}}{{30}^{o}} as 133\dfrac{-13}{3}.

Note: In these types of questions, students must take care of the calculation that should be done according to the BODMAS rule. Also, students are advised to memorize at least the values of sinθ\sin \theta and cosθ\cos \theta at different angles and from these values, they can find all the other trigonometric ratios like in the above question, they can find cot30o\cot {{30}^{o}} by using cos30osin30o,sec45o\dfrac{\cos {{30}^{o}}}{\sin {{30}^{o}}},\sec {{45}^{o}} by 1cos45o\dfrac{1}{\cos {{45}^{o}}} and sec30o\sec {{30}^{o}} by 1cos30o\dfrac{1}{\cos {{30}^{o}}}.