Solveeit Logo

Question

Question: Evaluate the following \[\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\c...

Evaluate the following cos47cos13sin47sin13\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }}

Explanation

Solution

Hint:we have to evaluate cos47cos13sin47sin13\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }} By applying the formula sum and difference of sines and cosines and then dividing the equations and applying the formulas we will arrive to the final answer.

Complete Step-by-step answer:
Given cos47cos13sin47sin13\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
This is in the form of cos(a+b)\cos \left( a+b \right)
cos(a+b)=cosacosbsinasinb\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Comparing both (a) and (1) we get that to solve (a) we can use the formula (1).
By following this cos47cos13sin47sin13\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }}
cos47cos13sin47sin13=cos(47+13)\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }}=\cos \left( 47+13 \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (b)
To represent (b) used the formula of (1)
cos47cos13sin47sin13=cos(60)\cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }}=\cos \left( 60 \right)
We know that the value of cos(60)\cos \left( 60 \right) as 12\dfrac{1}{2}
cos(60)=12\cos \left( 60 \right)=\dfrac{1}{2}
Hence evaluated \cos {{47}^{\circ }}\cos {{13}^{\circ }}-\sin {{47}^{\circ }}\sin {{13}^{\circ }}$$$$=\cos \left( 60 \right)$$$$=\dfrac{1}{2}

Note: To solve such types of problems all the related formulas should be handy. Also be careful about the signs in all the formulas. In the above equation division was made to simplify the terms and lead to the final answer. So smart moves lead to easy completion of answers.