Solveeit Logo

Question

Question: Evaluate the following: \({\cos ^{ - 1}}\left( {\cos 12} \right)\)....

Evaluate the following: cos1(cos12){\cos ^{ - 1}}\left( {\cos 12} \right).

Explanation

Solution

Here we will use the value of inverse trigonometric cosine function of the form cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x when xx lies in the interval [0,π]\left[ {0,\pi } \right]. So, we will check for the quadrant in which the argument of the cosine function lies to get the exact value of the function.

Complete step by step solution:
In the question, we have to find the value of the expression cos1(cos12){\cos ^{ - 1}}\left( {\cos 12} \right).
Here we will use the value of inverse trigonometric cosine function of the form cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x when xx lies in the interval [0,π]\left[ {0,\pi } \right].
But when xx lies in the interval 3π2<x<2π\dfrac{{3\pi }}{2} < x < 2\pi , then cos1(cosx)=2πx{\cos ^{ - 1}}\left( {\cos x} \right) = 2\pi - x. So, this is an important concept that is to be used here.
Now, in the problem we have cos12\cos 12 which has the argument as 12 which lies in the interval,
7π2<12<4π\Rightarrow \dfrac{{7\pi }}{2} < 12 < 4\pi
So, to bring that in the required interval of [0,π]\left[ {0,\pi } \right] we can write 12 as,
4π12\Rightarrow 4\pi - 12
Also, we know that,
cos(4π12)=cos12\Rightarrow \cos \left( {4\pi - 12} \right) = \cos 12
Now, we have the expression cos1(cos(4π12)){\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right) for the given expression cos1(cos12){\cos ^{ - 1}}\left( {\cos 12} \right).
Here, (4π12)\left( {4\pi - 12} \right) lies in the interval [0,π]\left[ {0,\pi } \right] and that can be shown below:
7π2<12<4π\Rightarrow \dfrac{{7\pi }}{2} < 12 < 4\pi
Multiply by -1 on all sides,
7π2>12>4π\Rightarrow - \dfrac{{7\pi }}{2} > - 12 > - 4\pi
Add 4π4\pi on all sides,
4π7π2>4π12>4π4π\Rightarrow 4\pi - \dfrac{{7\pi }}{2} > 4\pi - 12 > 4\pi - 4\pi
Subtract the terms to get the interval,
π2>4π12>0\Rightarrow \dfrac{\pi }{2} > 4\pi - 12 > 0
Now, replace 12 with (4π12)\left( {4\pi - 12} \right) in the expression,
cos1(cos12)=cos1(cos(4π12))\Rightarrow {\cos ^{ - 1}}\left( {\cos 12} \right) = {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)
Use the formula, cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x to get the value,
cos1(cos(4π12))=4π12\therefore {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right) = 4\pi - 12

Hence, the value of the expression cos1(cos12){\cos ^{ - 1}}\left( {\cos 12} \right) is 4π124\pi - 12.

Note: We have to be careful in finding the value of the inverse trigonometric function. It is important to check the quadrant in which the argument of the trigonometric function lies. So cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x is not true for all xx, but this is only true if the argument xx lies in the interval [0,π]\left[ {0,\pi } \right].