Solveeit Logo

Question

Question: Evaluate the following: \({\cos ^{ - 1}}(\cos 5)\)...

Evaluate the following: cos1(cos5){\cos ^{ - 1}}(\cos 5)

Explanation

Solution

Hint: We are going to solve the given problem using cos1(cosθ)=θ\cos^{-1} ({\cos }\theta ) = \theta if (0θπ)\left( {0 \leqslant \theta \leqslant \pi } \right)

\because 5 >π\pi (radian measure), we have
{\cos ^{ - 1}}\left( {\cos 5} \right) = {\cos ^{ - 1}}\left\\{ {\cos \left( {2\pi - 5} \right)} \right\\}
[ cos(2πθ)=cosθ\because \cos (2\pi - \theta ) = \cos \theta ]
cos1(cos5)=2π5{\cos ^{ - 1}}\left( {\cos 5} \right) = 2\pi - 5
\therefore The value of cos1(cos5)=2π5{\cos ^{ - 1}}\left( {\cos 5} \right) = 2\pi - 5

Note:
The measure of 5 radians lie in the fourth quadrant.
We have cos1(cosθ)=θ\cos^{-1} ({\cos }\theta ) = \theta only for (0θπ)\left( {0 \leqslant \theta \leqslant \pi } \right)
So we converted that as cos5=cos(2π5)\cos 5 = cos\left( {2\pi - 5} \right). The value of (2π5)\left( {2\pi - 5} \right) is less than π\pi .