Solveeit Logo

Question

Question: Evaluate the following: a. \( \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-3{{x}^{2}}+4}{{{...

Evaluate the following:
a. limx2x33x2+4x48x2+16\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-3{{x}^{2}}+4}{{{x}^{4}}-8{{x}^{2}}+16}
b. limx1[21x2+1x1]\underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{2}{1-{{x}^{2}}}+\dfrac{1}{x-1} \right]
c. limx3[1x2+4x+3+1x2+8x+15]\underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{1}{{{x}^{2}}+4x+3}+\dfrac{1}{{{x}^{2}}+8x+15} \right]

Explanation

Solution

Hint: After applying the value of limit in the limit expressions if you are getting 00or±\dfrac{0}{0}or\pm \dfrac{\infty }{\infty } form then use L’ Hospital’s rule. In L’ Hospital’s rule, you have to differentiate numerator and denominator and then put the value of limit if it is again in the 00or±\dfrac{0}{0}or\pm \dfrac{\infty }{\infty } then you have to second time differentiate the expression and then apply the limit. You have to do this process until 00or±\dfrac{0}{0}or\pm \dfrac{\infty }{\infty } is eliminated.

Complete step-by-step answer:
limx2x33x2+4x48x2+16\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-3{{x}^{2}}+4}{{{x}^{4}}-8{{x}^{2}}+16}
Substituting the value of x = 2 in the above limit expression we get,
x33x2+4x48x2+16 =(2)33(2)2+4(2)48(2)2+16 =812+41632+16 =00 \begin{aligned} & \dfrac{{{x}^{3}}-3{{x}^{2}}+4}{{{x}^{4}}-8{{x}^{2}}+16} \\\ & =\dfrac{{{\left( 2 \right)}^{3}}-3{{\left( 2 \right)}^{2}}+4}{{{\left( 2 \right)}^{4}}-8{{\left( 2 \right)}^{2}}+16} \\\ & =\dfrac{8-12+4}{16-32+16} \\\ & =\dfrac{0}{0} \\\ \end{aligned}
The above limit is in the form of 00\dfrac{0}{0} which is an indeterminate form. So, we are going to use L’ Hospital’s rule in which we will differentiate numerator and denominator and then substitute the value of x = 2.
Let us assume f(x) = x3 – 3x2 + 4 and g(x) = x4 – 8x2 + 15 then applying L’ Hospital’s rule we get,
limxaf(x)g(x)=limxaf(x)g(x)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)} ………………. Eq. (1)
Now, solving f’(x) and g’(x) we get,
f(x)=3x26x and g(x)=4x316xf'(x)=3{{x}^{2}}-6x\text{ and }g'(x)=4{{x}^{3}}-16x
Substituting the above values in eq. (1) we get,
limx23x26x4x316x =limx23x64x216 \begin{aligned} & \underset{x\to 2}{\mathop{\lim }}\,\dfrac{3{{x}^{2}}-6x}{4{{x}^{3}}-16x} \\\ & =\underset{x\to 2}{\mathop{\lim }}\,\dfrac{3x-6}{4{{x}^{2}}-16} \\\ \end{aligned}
Substituting x = 2 in the above limit we get,
3(2)64(4)16 =00 \begin{aligned} & \dfrac{3\left( 2 \right)-6}{4\left( 4 \right)-16} \\\ & =\dfrac{0}{0} \\\ \end{aligned}
As we are getting 00\dfrac{0}{0} form so we have to again apply the L’ Hospital’s rule in limx23x64x216\underset{x\to 2}{\mathop{\lim }}\,\dfrac{3x-6}{4{{x}^{2}}-16} then we get,
limx238x\underset{x\to 2}{\mathop{\lim }}\,\dfrac{3}{8x}
Now, we are plugging x = 2 in the above limit we get,
38(2) =316 \begin{aligned} & \dfrac{3}{8\left( 2 \right)} \\\ & =\dfrac{3}{16} \\\ \end{aligned}
Hence, the evaluation of the given limit expression is 316\dfrac{3}{16} .

(b) limx1[21x2+1x1]\underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{2}{1-{{x}^{2}}}+\dfrac{1}{x-1} \right]
Rewriting the above limit as:
limx1[2(1+x)(1x)11x] limx1[11x(21+x1)] limx1[11x(21x1+x)] limx1[11x(1x1+x)] \begin{aligned} & \underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{2}{\left( 1+x \right)\left( 1-x \right)}-\dfrac{1}{1-x} \right] \\\ & \underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{1}{1-x}\left( \dfrac{2}{1+x}-1 \right) \right] \\\ & \underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{1}{1-x}\left( \dfrac{2-1-x}{1+x} \right) \right] \\\ & \underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{1}{1-x}\left( \dfrac{1-x}{1+x} \right) \right] \\\ \end{aligned}
As you can see from the above limit expression that (1 – x) will be cancelled out from numerator and denominator we get,
limx1[11+x]\underset{x\to 1}{\mathop{\lim }}\,\left[ \dfrac{1}{1+x} \right]
Now, plugging x = 1 in the above limit expression we get,
12\dfrac{1}{2}
Hence, the value of the limit of the given expression is 12\dfrac{1}{2} .

limx3[1x2+4x+3+1x2+8x+15]\underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{1}{{{x}^{2}}+4x+3}+\dfrac{1}{{{x}^{2}}+8x+15} \right] First of all we are making factors of x2 + 4x + 3 and x2 + 8x + 15. x2+4x+3 =x2+x+3x+3 =x(x+1)+3(x+1) =(x+1)(x+3) \begin{aligned} & {{x}^{2}}+4x+3 \\\ & ={{x}^{2}}+x+3x+3 \\\ & =x\left( x+1 \right)+3\left( x+1 \right) \\\ & =\left( x+1 \right)\left( x+3 \right) \\\ \end{aligned}
x2+8x+15 =x2+3x+5x+15 =x(x+3)+5(x+3) =(x+3)(x+5) \begin{aligned} & {{x}^{2}}+8x+15 \\\ & ={{x}^{2}}+3x+5x+15 \\\ & =x\left( x+3 \right)+5\left( x+3 \right) \\\ & =\left( x+3 \right)\left( x+5 \right) \\\ \end{aligned}
Now, substituting these factors in the limit expression we get,
limx3[1(x+1)(x+3)+1(x+3)(x+5)] limx3[1x+3(1x+1+1x+5)] limx3[1x+3(2x+6(x+1)(x+5))] limx3[2x+3(x+3(x+1)(x+5))] limx3[2(x+1)(x+5)] \begin{aligned} & \underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{1}{\left( x+1 \right)\left( x+3 \right)}+\dfrac{1}{\left( x+3 \right)\left( x+5 \right)} \right] \\\ & \underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{1}{x+3}\left( \dfrac{1}{x+1}+\dfrac{1}{x+5} \right) \right] \\\ & \underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{1}{x+3}\left( \dfrac{2x+6}{\left( x+1 \right)\left( x+5 \right)} \right) \right] \\\ & \underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{2}{x+3}\left( \dfrac{x+3}{\left( x+1 \right)\left( x+5 \right)} \right) \right] \\\ & \underset{x\to 3}{\mathop{\lim }}\,\left[ \dfrac{2}{\left( x+1 \right)\left( x+5 \right)} \right] \\\ \end{aligned} Plugging the value of x = 3 in the above limit expression we get, 2(4)(8) =116 \begin{aligned} & \dfrac{2}{\left( 4 \right)\left( 8 \right)} \\\ & =\dfrac{1}{16} \\\ \end{aligned}
Hence, the value of the given limit expression is 116\dfrac{1}{16} .

Note: It is not necessary that limit questions are always solved by L’ Hospital’s rule you can reduce the expression given in question by factorizing or by using basic algebra to not 00or±\dfrac{0}{0}or\pm \dfrac{\infty }{\infty } indeterminate form like we have shown in solving part (b) of the question.