Solveeit Logo

Question

Question: Evaluate the following \[4\left( {{\sin }^{4}}{{60}^{o}}+{{\cos }^{4}}{{30}^{o}} \right)-3\left( {...

Evaluate the following
4(sin460o+cos430o)3(tan260otan245o)+5cos245o4\left( {{\sin }^{4}}{{60}^{o}}+{{\cos }^{4}}{{30}^{o}} \right)-3\left( {{\tan }^{2}}{{60}^{o}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}}

Explanation

Solution

Hint:First of all, consider the expression given in the question. Now make the table for trigonometric ratios of general angles. Now, from that find the values of sin60o,cos30o,tan60o,tan45o\sin {{60}^{o}},\cos {{30}^{o}},\tan {{60}^{o}},\tan {{45}^{o}} and cos45o\cos {{45}^{o}} and substitute these in the given expression to get the required answer.

Complete step-by-step answer:
In this question, we have to find the value of the expression
4(sin460o+cos430o)3(tan260otan245o)+5cos245o4\left( {{\sin }^{4}}{{60}^{o}}+{{\cos }^{4}}{{30}^{o}} \right)-3\left( {{\tan }^{2}}{{60}^{o}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}}
Let us consider the expression given in the question.
E=4(sin460o+cos430o)3(tan260otan245o)+5cos245o....(i)E=4\left( {{\sin }^{4}}{{60}^{o}}+{{\cos }^{4}}{{30}^{o}} \right)-3\left( {{\tan }^{2}}{{60}^{o}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}}....\left( i \right)
Now, we have to find the values of sin60o,cos30o,tan60o,tan45o\sin {{60}^{o}},\cos {{30}^{o}},\tan {{60}^{o}},\tan {{45}^{o}} and cos45o\cos {{45}^{o}}.
Let us make the table for trigonometric ratios of general angles like 0o,30o,45o,60o,90o{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}} and find the required values.

From the above table, we get, sin60o=32\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}. By substituting this in equation (i), we get,
E=4((32)4+cos430o)3(tan260otan245o)+5cos245oE=4\left( {{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}}+{{\cos }^{4}}{{30}^{o}} \right)-3\left( {{\tan }^{2}}{{60}^{o}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}}
Also from the above table, we get cos30o=32\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}. By substituting this in the above equation, we get, E=4((32)4+(32)4)3(tan260otan245o)+5cos245oE=4\left( {{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}} \right)-3\left( {{\tan }^{2}}{{60}^{o}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}}
From the table, we also get, tan60o=3\tan {{60}^{o}}=\sqrt{3}. By substituting this in the above equation, we get,
E=4((32)4+(32)4)3((3)2tan245o)+5cos245oE=4\left( {{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}} \right)-3\left( {{\left( \sqrt{3} \right)}^{2}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}}
From the table, we also get, tan45o=1\tan {{45}^{o}}=1. By substituting this in the above equation, we get,
E=4((32)4+(32)4)3((3)2(1)2)+5cos245oE=4\left( {{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}} \right)-3\left( {{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}} \right)+5{{\cos }^{2}}{{45}^{o}}
From the table, we also get, cos45o=12\cos {{45}^{o}}=\dfrac{1}{\sqrt{2}}. By substituting this in the above equation, we get,
E=4((32)4+(32)4)3((3)2(1)2)+5(12)2E=4\left( {{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{4}} \right)-3\left( {{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}} \right)+5{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}
By simplifying the above equation, we get,
E=4(916+916)3(31)+5(12)E=4\left( \dfrac{9}{16}+\dfrac{9}{16} \right)-3\left( 3-1 \right)+5\left( \dfrac{1}{2} \right)
E=4(1816)3(2)+52E=4\left( \dfrac{18}{16} \right)-3\left( 2 \right)+\dfrac{5}{2}
E=1846+52E=\dfrac{18}{4}-6+\dfrac{5}{2}
E=92+526E=\dfrac{9}{2}+\dfrac{5}{2}-6
E=1426E=\dfrac{14}{2}-6
E=76E=7-6
E=1E=1
Hence, we get the value of the expression 4(sin460o+cos430o)3(tan260otan245o)+5cos245o4\left( {{\sin }^{4}}{{60}^{o}}+{{\cos }^{4}}{{30}^{o}} \right)-3\left( {{\tan }^{2}}{{60}^{o}}-{{\tan }^{2}}{{45}^{o}} \right)+5{{\cos }^{2}}{{45}^{o}} as 1.

Note: In these types of questions, students just need to remember the values of sinθ\sin \theta and cosθ\cos \theta at various angles like 0o,30o,60o,45o,{{0}^{o}},{{30}^{o}},{{60}^{o}},{{45}^{o}}, etc. and they can find tanθ\tan \theta by using tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }. Also, students must take care of substituting the corresponding angle. For example, if we have to find tan60o\tan {{60}^{o}}, then we will use sin60o\sin {{60}^{o}} and cos60o\cos {{60}^{o}} while we have to find tan45o\tan {{45}^{o}}, then we will use sin45o\sin {{45}^{o}} and cos45o\cos {{45}^{o}} and likewise. Also, it would also be better to memorize the trigonometric table.