Solveeit Logo

Question

Question: Evaluate the expression \[{{\log }_{2}}xy=5,{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1\]...

Evaluate the expression log2xy=5,log12(xy)=1{{\log }_{2}}xy=5,{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1

Explanation

Solution

Hint: Use basic identity of logarithm given by;
If ax=N then logaN=x{{a}^{x}}=N\text{ then }{{\log }_{a}}N=x

We have equations/expression given in the problem as
log2xy=5.............(1){{\log }_{2}}xy=5.............\left( 1 \right)
And
log12(xy)=1....................(2){{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)
As, we know that if ax=N{{a}^{x}}=N then we can take log to both sides as base of aa
And we get:
ax=N{{a}^{x}}=N
Taking log\log on both sides
logaax=logaN{{\log }_{a}}{{a}^{x}}={{\log }_{a}}N
As we know that logcmn=nlogcm{{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m ;
Using this property we can write the above equation as;
xlogaa=logaNx{{\log }_{a}}a={{\log }_{a}}N
As we know logmm=1{{\log }_{m}}m=1 , we can rewrite the above relation as;
logaN=x{{\log }_{a}}N=x
Therefore, if we have ax=N{{a}^{x}}=N
Then logaN=x................(3){{\log }_{a}}N=x................\left( 3 \right)
Using the above property of logarithm we can write equation (1)\left( 1 \right) as
log2xy=5{{\log }_{2}}xy=5
xy=25.................(4)xy={{2}^{5}}.................\left( 4 \right)
Similarly, using the equation (3)\left( 3 \right) , we can write equation (2)\left( 2 \right) as
log12(xy)=1 xy=(12)1=(12)..............(5) \begin{aligned} & {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\\ & \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\\ \end{aligned}
Now, we need to find x and yx\text{ and y} ; For that we can multiply equation (4) and (5)\left( 4 \right)\text{ and }\left( 5 \right) in following way;
xy×xy=25×12 x2=322=16 x2=16 x=±4 \begin{aligned} & xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\\ & {{x}^{2}}=\dfrac{32}{2}=16 \\\ & {{x}^{2}}=16 \\\ & x=\pm 4 \\\ \end{aligned}
To get value of yy , we can divide equation (4)&(5)\left( 4 \right)\And \left( 5 \right)
xy(xy)=25(12) xy×yx=32×2 y2=64 y=±8 \begin{aligned} & \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\\ & xy\times \dfrac{y}{x}=32\times 2 \\\ & {{y}^{2}}=64 \\\ & y=\pm 8 \\\ \end{aligned}
Hence, we have x=±4 and y=±8x=\pm 4\text{ and }y=\pm 8 .
Now, here we need to select (x,y)\left( x,y \right) pairs which will satisfy the equation(5)&(4)\left( 5 \right)\And \left( 4 \right).
Now, we have four pairs as
x=4,y=8 x=4,y=8 x=4,y=8 x=4,y=8 \begin{aligned} & x=4,y=8 \\\ & x=-4,y=-8 \\\ & x=4,y=-8 \\\ & x=-4,y=8 \\\ \end{aligned}
We can put pairs to equation (4)&(5)\left( 4 \right)\And \left( 5 \right)for verification
Case 1: x=4,y=8x=4,y=8
For equation (4) xy=32\left( 4 \right)\text{ }xy=32
LHS=4×8=32=RHSLHS=4\times 8=32=RHS
For equation (5) xy=12\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}
LHS=48=12=RHSLHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS
Hence (4,8)\left( 4,8 \right) is the solution of the given equations.
Case 2: x=4,y=8x=-4,y=8
For equation (4)\left( 4 \right) xy=32xy=32
LHS=4×8=32=RHSLHS=-4\times -8=32=RHS
For equation (5) xy=12\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}
LHS=48=12=RHSLHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS
Hence, (4,8)\left( -4,-8 \right) pair is also a solution of the given equations.
Case 3: x=4,y=8x=-4,y=8
For equation (4) xy=32\left( 4 \right)\text{ }xy=32
LHS=4×8=32RHSLHS=-4\times 8=-32\ne RHS
It will not satisfy the equation (5)\left( 5 \right) xy=12\dfrac{x}{y}=\dfrac{1}{2} as well.
Hence, (4,8)\left( -4,8 \right) pair is not a solution to the given equation.
Case 4: x=4,y=8x=4,y=-8
For equation (4) xy=32\left( 4 \right)\text{ }xy=32
4×(8)=32RHS4\times \left( -8 \right)=-32\ne RHS
For equation (5)xy=12\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}
LHS=48=12RHSLHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS
Hence,(4,8)\left( 4,-8 \right) is not a solution of the given equation.

Note: We can get answers by putting values of x=±4x=\pm 4 in any of the equation (3)&(4)\left( 3 \right)\And \left( 4 \right) which will minimize our confusion related to (4,8)or(4,8)\left( -4,8 \right)or\left( 4,-8 \right) as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function (log2xy=5 !!&!! log12xy=1)\left( {{\log }_{2}}xy=5\text{ }\\!\\!\And\\!\\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right) as we cannot put negative values in logarithm mm function. Domain of logx\log x is R+{{R}^{+}} (positive real numbers).
One can go wrong by getting confused with formula if ax=N{{a}^{x}}=N then logaN=x{{\log }_{a}}N=x . He/she may apply if ax=N{{a}^{x}}=Nthen logNa=x{{\log }_{N}}a=x(general confusion with basic definition of logarithm function).