Solveeit Logo

Question

Question: Evaluate the expression \({{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2\)....

Evaluate the expression log2log2log4256+2log22{{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2.

Explanation

Solution

Hint: The given problem is related to logarithms. Express the argument as a power of the base. Then use the following properties:
(i). logam=mloga\log {{a}^{m}}=m\log a .
(ii). logaxb=1xlogab{{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b
(iii). logaa=1{{\log }_{a}}a=1

Complete step-by-step answer:

The given expression is log2log2log4256+2log22{{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2. Let us assume log2log2log4256{{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256 to be a and 2log222{{\log }_{\sqrt{2}}}2 be b.

Let us solve these separately.
First, let us solve for a.
a=log2log2log4256a={{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256
a=log2log2(log4256)\Rightarrow a={{\log }_{2}}{{\log }_{2}}\left( {{\log }_{4}}256 \right)
Now, we can express 256 as =256=4×4×4×4=44=256=4\times 4\times 4\times 4={{4}^{4}} .
a=log2log2(log444)\Rightarrow a={{\log }_{2}}{{\log }_{2}}\left( {{\log }_{4}}{{4}^{4}} \right)
Now, we know logam=mloga\log {{a}^{m}}=m\log a . So, log444=4log44{{\log }_{4}}{{4}^{4}}=4{{\log }_{4}}4 . We also know logaa=1{{\log }_{a}}a=1 . So, log44=1{{\log }_{4}}4=1.
log444=4\Rightarrow {{\log }_{4}}{{4}^{4}}=4
a=log2log24\Rightarrow a={{\log }_{2}}{{\log }_{2}}4
=log2(log24) ={{\log }_{2}}\left( {{\log }_{2}}4 \right)\
=log2(log222)={{\log }_{2}}\left( {{\log }_{2}}{{2}^{2}} \right)
=log22                          [since logaa=1]={{\log }_{2}}2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \text{since}\ {{\log }_{a}}a=1 \right]
=1=1
a=1\therefore a=1
Now, let us solve for b.
b=2log(2)2 =2log2122 \begin{aligned} & b=2{{\log }_{\left( \sqrt{2} \right)}}2 \\\ & =2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2 \\\ \end{aligned}
Now, we know, logaxb=1xlogab{{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b .
Using the above expression,
2log2122=2×1(12)×log22 =2×2×1 =4 b=4 \begin{aligned} & 2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2=2\times \dfrac{1}{\left( \dfrac{1}{2} \right)}\times {{\log }_{2}}2 \\\ & =2\times 2\times 1 \\\ & =4 \\\ & \therefore b=4 \\\ \end{aligned}
Now, we are asked to find the value of log2log2log4256+2log22{{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2 , i.e. a + b. We know, a = 1 and b = 4.
a+b=1+4 =5 \begin{aligned} & \Rightarrow a+b=1+4 \\\ & =5 \\\ \end{aligned}
Therefore, the answer is 5.

Note: While using the properties, make sure to use the terms properly. For example: While evaluating b, we used the property logaxb=1xlogab{{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b . On comparing with 2log21222{{\log }_{{{2}^{\dfrac{1}{2}}}}}2 , we get x=12x=\dfrac{1}{2} . Some students get confused and write x = 2, which is wrong and can lead to wrong answers.