Question
Question: Evaluate the expression \(\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\...
Evaluate the expression cos1∘+cos2∘+cos3∘+...+cos180∘ is equal to
(A) 1
(B) 0
(C) 2
(D) -1
Solution
Hint: Convert all the angles to acute angles i.e. between 0 to 90∘.
Here, we need to find summation of series between 0 to 90∘.
cos1∘+cos2∘+cos3∘+...+cos180∘
Let us suppose the series is denoted by S.
S=cos1∘+cos2∘+cos3∘+...+cos180∘............(1)
We need to know about trigonometric conversions (i.e. one function to another) by changing
the angles.
We have,
S=cos1∘+cos2∘+cos3∘+...+cos180∘
Let us write another series which has only cosine with obtuse angles.
S′=cos91∘+cos92∘+cos93∘+...+cos179∘+cos180∘
Let us convert one by one to acute angle cosines;
We can write cos91∘as cos(180∘−89∘) or cos(π−89∘). As angle is in the form of multiple of
π , which means no conversion of function only signs can be changed. (π−89∘) or 91∘lies in second quadrant where cos is
negative, so we can write
cos91∘=cos(180∘−89∘)=−cos89∘
Similarly, cos92∘can be substitute as cos(180∘−88∘)=−cos88∘
Similarly,
cos92∘=cos(180∘−87∘)=−cos87∘
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
cos179∘=cos(180∘−1∘)=−cos1∘cos180∘=cos(180∘−0∘)=−cos0∘
And, hence series S’ can be written as;
S′=−cos0∘−cos1∘−cos2∘−...−cos89∘........(2)
Now, let us put the value of series S’ in series S.
We have,
S=cos1∘+cos2∘+cos3∘+...+cos179∘+cos180∘S=(cos1∘+cos2∘+cos3∘+.....cos90∘)+(cos91∘+cos92∘+...+cos179∘+cos180∘)S=(cos1∘+cos2∘+cos3∘+.....cos90∘)+S′
Putting value of S’ from equation (2) we get;
S=(cos1∘+cos2∘+cos3∘+.....cos90∘)−(cos0∘+cos1∘+cos2∘+.....+cos89∘)
Taking similar terms in one bracket, we get;
$\begin{aligned}
& S=\left( \cos {{1}^{{}^\circ }}-\cos {{1}^{{}^\circ }} \right)+\left( \cos {{2}^{{}^\circ }}-\cos
{{2}^{{}^\circ }} \right)+\left( \cos {{3}^{{}^\circ }}-\cos {{3}^{{}^\circ }} \right)+.....\left( \cos
{{89}^{{}^\circ }}-\cos {{89}^{{}^\circ }} \right)+\left( \cos {{90}^{{}^\circ }}-\cos {{0}^{{}^\circ }}
\right) \\
& S=0+0+0......0+0-1 \\
& S=-1 \\
\end{aligned}Hence,summationofseriesSis−1.Option(D)isthecorrectanswer.Note:Anotherapproachforthegivenquestionwouldbelike;S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }}$
We have direct formula of cosine series