Solveeit Logo

Question

Question: Evaluate the equation \(\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}\) A) Is...

Evaluate the equation cos2π7+cos4π7+cos6π7\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}
A) Is equal to zero
B) Lies between 0 and 3
C) Is a negative number
D) Lies between 3 and 6

Explanation

Solution

Hint: Multiply and divide with sinπ7\sin \dfrac{\pi }{7} to the expression then simplify the expression using the trigonometric identities.

Complete step-by-step answer:
We have expression
cos2π7+cos4π7+cos6π7\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}
Let us suppose the given expression is M.
M=cos2π7+cos4π7+cos6π7............(1)M=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}............\left( 1 \right)
Now, multiply the equation (1) by using 2sinπ72\sin \dfrac{\pi }{7} to both sides and then apply trigonometric identity as follows:
2Msinπ7=2sinπ7cos2π7+2sinπ7cos4π7+2sinπ7cos6π7..........(2)2M\sin \dfrac{\pi }{7}=2\sin \dfrac{\pi }{7}\cos \dfrac{2\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{4\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{6\pi }{7}..........\left( 2 \right)
Here, we have to apply relation;
2 sin A cos B = sin (A + B) + sin (A – B)............................(3)
Now apply the above trigonometric identity in equation (2), we get
2Msinπ7=sin(π7+2π7)+sin(π72π7)+sin(π7+4π7)+sin(π74π7)+sin(π7+6π7)+sin(π76π7)2M\sin \dfrac{\pi }{7}=\sin \left( \dfrac{\pi }{7}+\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{6\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{6\pi }{7} \right) One simplifying the above equation, we get;
2Msinπ7=sin3π7+sin(π7)+sin5π7+sin(3π7)+sin(7π7)+sin(5π7)2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}+\sin \left( \dfrac{-\pi }{7} \right)+\sin \dfrac{5\pi }{7}+\sin \left( \dfrac{-3\pi }{7} \right)+\sin \left( \dfrac{7\pi }{7} \right)+\sin \left( \dfrac{-5\pi }{7} \right)
As, we know that;
sin(θ)=sinθ................(4)\sin \left( -\theta \right)=-\sin \theta ................\left( 4 \right)
Therefore, we can write the value of 2Msinπ72M\sin \dfrac{\pi }{7} by using the relation (4), we get;
2Msinπ7=sin3π7sinπ7+sin5π7sin3π7+sin7π7sin5π72M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}-\sin \dfrac{\pi }{7}+\sin \dfrac{5\pi }{7}-\sin \dfrac{3\pi }{7}+\sin \dfrac{7\pi }{7}-\sin \dfrac{5\pi }{7}
Cancelling out same terms with positive and negative signs, we get;
2Msinπ7=sinπ7+sin(7π7)2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \left( \dfrac{7\pi }{7} \right)
Or
2Msinπ7=sinπ7+sinπ2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \pi
We have value if sinπ\sin \pi is zero. Hence, above equation can be written as
2Msinπ7=sinπ7 M=sinπ72sinπ7 \begin{aligned} & 2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7} \\\ & M=\dfrac{-\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}} \\\ \end{aligned}
Therefore M=12M=\dfrac{-1}{2}
Hence, value of cos2π7+cos4π7+cos6π7\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7} is 12\dfrac{-1}{2} .
Hence, option C is correct from the given options.
Note: Key point of the question is multiplication by sinπ7\sin \dfrac{\pi }{7} to the expression cos2π7+cos4π7+cos6π7.\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}. As, we know after multiplying, we will get expression of type 2sinAcosB which cancel out all terms.
One can go wrong while applying the formula of 2sinAcosB. Confusion of plus or minus sign between sin(A+B) and sin (A-B) may occur. So, we can verify that by just expanding sin(A+B) and sin(A-B). And, we get to know identity as;
2sinAcosB=sin(A+B)+sin(A-B)