Solveeit Logo

Question

Mathematics Question on Determinants

Evaluate the determinants
(i) 312 001 350\begin{vmatrix}3 & -1 & -2\\\ 0 & 0 & -1 \\\ 3&-5&0\end{vmatrix}(iii) 345 122 231\begin{vmatrix} 3 & -4 & 5\\\ 1 & 2 & -2 \\\ 2&3&1\end{vmatrix}
(ii)012 103 230\begin{vmatrix} 0 & 1 & 2\\\ -1 & 0 & -3 \\\ -2&3&0\end{vmatrix} (iv)212 021\350\begin{vmatrix} 2 & -1 & -2\\\ 0 & 2 & -1\\\3&-5&0 \end{vmatrix}

Answer

(i) Let A=312 001 350\begin{vmatrix}3 & -1 & -2\\\ 0 & 0 & -1 \\\ 3&-5&0\end{vmatrix}

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

IAI=-012 50\begin{vmatrix}-1 & -2 \\\ -5&0\end{vmatrix}+032\30\begin{vmatrix}3&-2\\\3&0\end{vmatrix}-(-1)31 35\begin{vmatrix}3& -1 \\\ 3&-5\end{vmatrix}= (-15+3)=-12

(ii)Let A=012 103 230\begin{vmatrix} 0 & 1 & 2\\\ -1 & 0 & -3 \\\ -2&3&0\end{vmatrix}

By expanding along the first row, we have:
IAI=003 30\begin{vmatrix}0 & -3 \\\ 3&0\end{vmatrix}-113 20\begin{vmatrix}-1 & -3 \\\ -2&0\end{vmatrix}
=0-1(0-6)+2(-3-0)
=6-6=0

(iii) Let A=345 122 231\begin{vmatrix} 3 & -4 & 5\\\ 1 & 2 & -2 \\\ 2&3&1\end{vmatrix}

By expanding along the first row, we have:
IAI=312 31\begin{vmatrix}1 & -2 \\\ 3&1\end{vmatrix}+412 21\begin{vmatrix}1 & -2 \\\ 2&1\end{vmatrix}+511 23\begin{vmatrix}1 & 1 \\\ 2&3\end{vmatrix}
=3(1+6)+4(1+4)+5(3-2)
=21+20+5
=46

(iv) Let A=212 021\350\begin{vmatrix} 2 & -1 & -2\\\ 0 & 2 & -1\\\3&-5&0 \end{vmatrix}

By expanding along the first column, we have:
IAI=21 50\begin{vmatrix}2 & -1 \\\ -5&0\end{vmatrix}-012 50\begin{vmatrix}-1 & -2 \\\ -5&0\end{vmatrix}+312 22\begin{vmatrix}-1 & -2 \\\ 2&-2\end{vmatrix}
=2(0-5)-0+3(1+4)
=-10+15
=5