Solveeit Logo

Question

Question: Evaluate the determinant to the closest integer: \(A=\left[ \begin{matrix} {{\log }_{3}}512 & {...

Evaluate the determinant to the closest integer: A=[log3512log43 log38log49 ]A=\left[ \begin{matrix} {{\log }_{3}}512 & {{\log }_{4}}3 \\\ {{\log }_{3}}8 & {{\log }_{4}}9 \\\ \end{matrix} \right].

Explanation

Solution

We start solving the problem by recalling the determinant of the matrix [ab cd ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right] as ab cd =(a×d)(b×c)\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right). We use this definition for the matrix and make use of the result logambn=nmlogab{{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b to proceed through the problem. We then make use of the result logab×logba=1{{\log }_{a}}b\times {{\log }_{b}}a=1 and make necessary calculations to find the required value of the determinant.

Complete step by step answer:
According to the problem, we need to find the determinant of the given matrix A=[log3512log43 log38log49 ]A=\left[ \begin{matrix} {{\log }_{3}}512 & {{\log }_{4}}3 \\\ {{\log }_{3}}8 & {{\log }_{4}}9 \\\ \end{matrix} \right] and find its closest integer.
We know that the determinant of the matrix [ab cd ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right] is defined as ab cd =(a×d)(b×c)\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right). Let us use this definition for finding the determinant of matrix A.
So, we have A=log3512log43 log38log49 \left| A \right|=\left| \begin{matrix} {{\log }_{3}}512 & {{\log }_{4}}3 \\\ {{\log }_{3}}8 & {{\log }_{4}}9 \\\ \end{matrix} \right|.
A=(log3512×log49)(log38×log43)\Rightarrow \left| A \right|=\left( {{\log }_{3}}512\times {{\log }_{4}}9 \right)-\left( {{\log }_{3}}8\times {{\log }_{4}}3 \right).
A=(log329×log2232)(log323×log223)\Rightarrow \left| A \right|=\left( {{\log }_{3}}{{2}^{9}}\times {{\log }_{{{2}^{2}}}}{{3}^{2}} \right)-\left( {{\log }_{3}}{{2}^{3}}\times {{\log }_{{{2}^{2}}}}3 \right) ---(1).
We know that logambn=nmlogab{{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b. We use this result in equation (1).
A=((91log32)×(22log23))((31log32)×(12log23))\Rightarrow \left| A \right|=\left( \left( \dfrac{9}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{2}{2}{{\log }_{2}}3 \right) \right)-\left( \left( \dfrac{3}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right).
A=((9log32)×(log23))((3log32)×(12log23))\Rightarrow \left| A \right|=\left( \left( 9{{\log }_{3}}2 \right)\times \left( {{\log }_{2}}3 \right) \right)-\left( \left( 3{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right).
A=9(log32×log23)32(log32×log23)\Rightarrow \left| A \right|=9\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)-\dfrac{3}{2}\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right) ---(2).
We know that logab×logba=1{{\log }_{a}}b\times {{\log }_{b}}a=1. We use this result in equation (2).
A=9(1)32(1)\Rightarrow \left| A \right|=9\left( 1 \right)-\dfrac{3}{2}\left( 1 \right).
A=932\Rightarrow \left| A \right|=9-\dfrac{3}{2}.
A=1832\Rightarrow \left| A \right|=\dfrac{18-3}{2}.
A=152\Rightarrow \left| A \right|=\dfrac{15}{2}.
A=7.5\Rightarrow \left| A \right|=7.5.
We know that the closest integer(s) to 7.5 is 7 or 8.

∴ The closest integer(s) to the determinant of matrix A=[log3512log43 log38log49 ]A=\left[ \begin{matrix} {{\log }_{3}}512 & {{\log }_{4}}3 \\\ {{\log }_{3}}8 & {{\log }_{4}}9 \\\ \end{matrix} \right] is 7 or 8.

Note: We can prove logab×logba=1{{\log }_{a}}b\times {{\log }_{b}}a=1 by using the fact logab=logeblogea{{\log }_{a}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}a}. We can see that the given problem contains a heavy amount of calculation, so we need to perform each step carefully. We should not confuse A\left| A \right| with modulus of A and take only positive value for the determinant which is the most common mistake done by students. We can see that the obtained determinant is the middle value of the integers 7 and 8 which is the reason why we had taken both integers as closest.