Question
Mathematics Question on integral
Evaluate the definite integral: ∫0πsecx+tanxxtanxdx
Answer
Let I=∫0πsecx+tanxxtanxdx.....(1)
I=∫0π(sec(π−x)+tan(π−x)π−x)tan(π−x)dx (∫0aƒ(x)dx=∫0aƒ(a−x)dx)
⇒I=∫0π−(secx+tanx)−(π−x)tanxdx
⇒I=∫0πsecx+tanx(π−x)tanxdx...(2)
Adding(1)and(2),weobtain
2I=∫0πsecx+tanxπtanxdx
⇒2I=π∫0π1+sinxsinx+1−1dx
⇒2I=π∫0π1.dx−π∫0π1+sinx1dx
⇒2I=π[x]0π−π∫0πcos2x1−sinxdx
⇒2I=π2−π∫0π(sec2x−tanxsecx)dx
⇒2I=π2−π[tanx−secx]0π
⇒2I=π2−π[tanπ−secπ−tan0sec0]
⇒2I=π2−π[0−(−1)−0+1]
⇒2I=π2−2π
⇒2I=π(π−2)
⇒I=2π(π−2)