Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: ππ2ex(1sinx1cosx)dx\int_{\pi}^{\frac{\pi}{2}}e^{x}(\frac{1-sinx}{1-cosx})dx

Answer

I=ππ2ex(1sinx1cosx)dxI=\int_{\pi}^{\frac{\pi}{2}}e^{x}(\frac{1-sinx}{1-cosx})dx

=\int_{\pi}^{\frac{\pi}{2}}$$(\frac{1-2sin\frac{x}{2}cos\frac{x}{2}}{2sin^{2}\frac{x}{2}})dx

=\int_{\pi}^{\frac{\pi}{2}}$$e^{x}(\frac{cosec^{2}\frac{x}{2}}{2}-cot\frac{x}{2})dx

Letƒ(x)=cotx2 ƒ(x)=-cot\frac{x}{2}

⇒ƒ'(x)=$$-(-\frac{1}{2}cosec^{2}\frac{x}{2})=\frac{1}{2}cosec^{2}\frac{x}{2}

I=ππ2ex(ƒ(x)+ƒ(x)]dx∴I=\int_{\pi}^{\frac{\pi}{2}}e^{x}(ƒ(x)+ƒ'(x)]dx

=[ex.ƒ(x)dx]ππ2=[e^{x}.ƒ(x)dx]_{\pi}^{\frac{\pi}{2}}

=[ex.cotx2]ππ2=-[e^{x}.cot\frac{x}{2}]_{\pi}^{\frac{\pi}{2}}

=[eπ×cotπ2eπ2×cotπ4]=-[e^{\pi}\times cot\frac{\pi}{2}-e^\frac{π}{2}×cot\frac{π}{4}]

=[eπ×0eπ2×1]=-[e^{\pi}\times 0-e^{\frac{\pi}{2}}×1]

=eπ2=e^{\frac{π}{2}}