Question
Mathematics Question on integral
Evaluate the definite integral: ∫π2πex(1−cosx1−sinx)dx
Answer
I=∫π2πex(1−cosx1−sinx)dx
=\int_{\pi}^{\frac{\pi}{2}}$$(\frac{1-2sin\frac{x}{2}cos\frac{x}{2}}{2sin^{2}\frac{x}{2}})dx
=\int_{\pi}^{\frac{\pi}{2}}$$e^{x}(\frac{cosec^{2}\frac{x}{2}}{2}-cot\frac{x}{2})dx
Letƒ(x)=−cot2x
⇒ƒ'(x)=$$-(-\frac{1}{2}cosec^{2}\frac{x}{2})=\frac{1}{2}cosec^{2}\frac{x}{2}
∴I=∫π2πex(ƒ(x)+ƒ′(x)]dx
=[ex.ƒ(x)dx]π2π
=−[ex.cot2x]π2π
=−[eπ×cot2π−e2π×cot4π]
=−[eπ×0−e2π×1]
=e2π