Solveeit Logo

Question

Question: Evaluate the definite integral \(\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \tan x}}} dx\)....

Evaluate the definite integral 0πxtanxsecx+tanxdx\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \tan x}}} dx.

Explanation

Solution

Before attempting this question, one should have prior knowledge about the concept of definite integrals and also remember to use 0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)dx = \int\limits_0^a {f\left( {a - x} \right)} } dx, baf(x)=f(a)f(b)\int\limits_b^a {f\left( x \right)} = f\left( a \right) - f\left( b \right)in the given integral, using this will help you to approach the solution of the question.

Complete step by step answer:
According to the question, we have to evaluate the following equation i.e.I=0πxtanxsecx+tanxdxI = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \tan x}}} dx
We know that by the formula of integration i.e. 0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)dx = \int\limits_0^a {f\left( {a - x} \right)} } dxapplying the formula in the given equation we get
I=0π(πx)+tan(πx)sec(πx)+tan(πx)I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right) + \tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \tan \left( {\pi - x} \right)}}}
We know that by the trigonometric identities i.e. tan(πx)=tanx\tan \left( {\pi - x} \right) = - \tan x and sec(πx)=secx\sec \left( {\pi - x} \right) = - \sec x
Therefore, 0π(πx)(tanx)secxtanxdx\int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\left( { - \tan x} \right)}}{{ - \sec x - \tan x}}} dx
\Rightarrow 0π(πx)tanxsecx+tanxdx\int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \tan x}}} dx
I=0ππtanxdxsecx+tanx0πxtanxdxsecx+tanxI = \int\limits_0^\pi {\dfrac{{\pi \tan xdx}}{{\sec x + \tan x}}} - \int\limits_0^\pi {\dfrac{{x\tan xdx}}{{\sec x + \tan x}}}
Since it is given thatI=0πxtanxdxsecx+tanxI = \int\limits_0^\pi {\dfrac{{x\tan xdx}}{{\sec x + \tan x}}}
Now if you observe, you will find out that right equation is same as the value of I, so we can also write it as,
I=0ππtanxdxsecxtanxII = \int\limits_0^\pi {\dfrac{{{\pi ^{\tan x}}dx}}{{\sec x - \tan x}}} - I
If we move I to the left side of the equation, we have
\Rightarrow 2I=π0πtanxsecx+tanxdx2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \tan x}}} dx
Now, if we multiply both the numerator and denominator by(secx+tanx)\left( {\sec x + \tan x} \right), we get
I=π20πtanx(secxtanx)sec2xtan2xdxI = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x\left( {\sec x - \tan x} \right)}}{{{{\sec }^2}x - {{\tan }^2}x}}} dx
We know that by the trigonometric identities i.e. sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
Therefore, I=π20πsecxtanxtan2xdxI = \dfrac{\pi }{2}\int\limits_0^\pi {\sec x\tan x - {{\tan }^2}xdx}
Since we know that by the trigonometric identities sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1 or tan2x=1sec2x - {\tan ^2}x = 1 - {\sec ^2}x
Now substituting the value in the above equation, we get
I=π20πsecxtanx(sec2x1)dxI = \dfrac{\pi }{2}\int\limits_0^\pi {\sec x\tan x - \left( {se{c^2}x - 1} \right)} dx
\Rightarrow I=π20πsecxtanxsec2x+1dxI = \dfrac{\pi }{2}\int\limits_0^\pi {\sec x\tan x - {{\sec }^2}x + 1dx}
We know that by the integration formulas i.e. secx(tanx)=secx\int {\sec x\left( {\tan x} \right)} = \sec x, sec2x=tanx\int {{{\sec }^2}x} = \tan xand 1dx=x\int {1dx} = x
Therefore, I=π2[secxtanx+x]0πI = \dfrac{\pi }{2}\left[ {secx - \tan x + x} \right]_0^\pi
Since we know that in definite integrals the formula of integral is baf(x)=f(a)f(b)\int\limits_b^a {f\left( x \right)} = f\left( a \right) - f\left( b \right)
Therefore, by substituting the values of limit in the above equation we getI=π2[secπtanπ+πsec0+tan00]I = \dfrac{\pi }{2}\left[ {\sec \pi - \tan \pi + \pi - \sec 0 + \tan 0 - 0} \right]
As we all know that secx+tanx=1\sec x + \tan x = 1
Therefore, I=π2(1+π1)I = \dfrac{\pi }{2}\left( { - 1 + \pi - 1} \right)
\Rightarrow I=π2(π2)I = \dfrac{\pi }{2}\left( {\pi - 2} \right)
\Rightarrow I=π22πI = \dfrac{{{\pi ^2}}}{2} - \pi
So, the value of definite integral is I=π22πI = \dfrac{{{\pi ^2}}}{2} - \pi

Note:
In the above solution we used the concepts of definite and indefinite integrals which are the two types of integration where definite integrals consist of two limits in integrals both of the limits are named as upper limit and lower limit which defines the lowest and height value of the given function whereas indefinite integrals doesn’t consists of upper and lower limits also the difference in definite and indefinite integrals is the definite and indefinite values given by the definite and indefinite integrals.