Solveeit Logo

Question

Question: Evaluate the definite integral \[\int\limits_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin...

Evaluate the definite integral
0π4sinx+cosx9+16sin2xdx\int\limits_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin 2x}}dx

Explanation

Solution

- Hint: First of all, assume sin x – cos x = t. Differentiate it and square it to get the value (sin x + cos x) dx and sin 2x in terms of t. Now, transfer the given integral in terms of t and use dxa2x2=loga+xax+c\int{\dfrac{dx}{{{a}^{2}}-{{x}^{2}}}}=\log \left| \dfrac{a+x}{a-x} \right|+c to solve the given integral. Substitute the new limits to get the required answer.

Complete step-by-step solution -

In this question, we have to solve the given definite integral
0π4sinx+cosx9+16sin2xdx\int\limits_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin 2x}}dx
Let us consider the integral given in the question.
I=0π4sinx+cosx9+16sin2xdx.....(i)I=\int\limits_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin 2x}}dx.....\left( i \right)
Let us assume sin x – cos x = t….(ii)
We know that,
ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x
ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x
So, by differentiating both the sides of equation (ii), we get,
(cosx+sinx)=dtdx\left( \cos x+\sin x \right)=\dfrac{dt}{dx}
(cosx+sinx)dx=dt...(iii)\left( \cos x+\sin x \right)dx=dt...\left( iii \right)
Also, by squaring both the sides of equation (ii), we get,
(sinxcosx)2=t2{{\left( \sin x-\cos x \right)}^{2}}={{t}^{2}}
We know that,
(ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab
By using this, we get,
sin2x+cos2x2sinxcosx=t2{{\sin }^{2}}x+{{\cos }^{2}}x-2\sin x\cos x={{t}^{2}}
By using this sin2x+cos2x=1 and 2sinxcosx=sin2x{{\sin }^{2}}x+{{\cos }^{2}}x=1\text{ and }2\sin x\cos x=\sin 2x, we get,
1sin2x=t21-\sin 2x={{t}^{2}}
sin2x=1t2.....(iv)\sin 2x=1-{{t}^{2}}.....\left( iv \right)
So, by substituting the value of (sin x + cos x)dx and sin 2x from equation (iii) and (iv) in equation (i), we get,
I=ABdt9+16(1t2)I=\int\limits_{A}^{B}{\dfrac{dt}{9+16\left( 1-{{t}^{2}} \right)}}
Let us find the value of the units A and B by substituting x = 0 and x=π4x=\dfrac{\pi }{4} in equation (ii).
A=sin(0)cos(0)A=\sin \left( 0 \right)-\cos \left( 0 \right)
A = 0 – 1
A = – 1
B=sin(π4)cos(π4)B=\sin \left( \dfrac{\pi }{4} \right)-\cos \left( \dfrac{\pi }{4} \right)
B=1212=0B=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}=0
So, we get,
I=10dt9+16(1t2)I=\int\limits_{-1}^{0}{\dfrac{dt}{9+16\left( 1-{{t}^{2}} \right)}}
I=10dt9+1616t2I=\int\limits_{-1}^{0}{\dfrac{dt}{9+16-16{{t}^{2}}}}
I=10dt2516t2I=\int\limits_{-1}^{0}{\dfrac{dt}{25-16{{t}^{2}}}}
By taking out 16 common from the denominator, we get,
I=11610dt2516t2I=\dfrac{1}{16}\int\limits_{-1}^{0}{\dfrac{dt}{\dfrac{25}{16}-{{t}^{2}}}}
I=11610dt(54)2(t)2I=\dfrac{1}{16}\int\limits_{-1}^{0}{\dfrac{dt}{{{\left( \dfrac{5}{4} \right)}^{2}}-{{\left( t \right)}^{2}}}}
We can see that the above integral is of the form dxa2x2\int{\dfrac{dx}{{{a}^{2}}-{{x}^{2}}}} and we know that dxa2x2=12aloga+xax+c\int{\dfrac{dx}{{{a}^{2}}-{{x}^{2}}}}=\dfrac{1}{2a}\log \left| \dfrac{a+x}{a-x} \right|+c. By using this, we get,
I=116[12.(54)log54+t54t]10I=\dfrac{1}{16}\left[ \dfrac{1}{2.\left( \dfrac{5}{4} \right)}\log \left| \dfrac{\dfrac{5}{4}+t}{\dfrac{5}{4}-t} \right| \right]_{-1}^{0}
I=14[110log5+4t54t]10I=\dfrac{1}{4}\left[ \dfrac{1}{10}\log \left| \dfrac{5+4t}{5-4t} \right| \right]_{-1}^{0}
I=140[log5+4t54t]10I=\dfrac{1}{40}\left[ \log \left| \dfrac{5+4t}{5-4t} \right| \right]_{-1}^{0}
I=140[log5+4(0)54(0)log5+4(1)54(1)]I=\dfrac{1}{40}\left[ \log \left| \dfrac{5+4\left( 0 \right)}{5-4\left( 0 \right)} \right|-\log \left| \dfrac{5+4\left( -1 \right)}{5-4\left( -1 \right)} \right| \right]
I=140[log55log19]I=\dfrac{1}{40}\left[ \log \left| \dfrac{5}{5} \right|-\log \left| \dfrac{1}{9} \right| \right]
I=140[log1log(19)]I=\dfrac{1}{40}\left[ \log 1-\log \left( \dfrac{1}{9} \right) \right]
We know that log 1 = 0. By using this, we get,
I=140(log19)I=\dfrac{1}{40}\left( -\log \dfrac{1}{9} \right)
We know that nlogm=logmnn\log m=\log {{m}^{n}}. By using this, we get,
I=140[log(19)1]I=\dfrac{1}{40}\left[ \log {{\left( \dfrac{1}{9} \right)}^{-1}} \right]
I=140log9I=\dfrac{1}{40}\log 9
Hence, we get the value of 0π4sinx+cosx9+16sin2xdx as 140log9\int\limits_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin 2x}}dx\text{ as }\dfrac{1}{40}\log 9

Note: In this question, many students solve the integral correctly but forget to change the limits that is like in the above equation, they forget to transform the limits 0 and π4\dfrac{\pi }{4} into 1 and 0 respectively and get the wrong answer even after doing the question correctly. So, this must be taken care of in the case of definite integrals. Also, students must remember the formula for general integrals to easily solve the question without making it very lengthy.