Question
Mathematics Question on integral
Evaluate the definite integral: ∫3π6πsin2xsinx+cosxdx
LetI=∫3π6πsin2xsinx+cosxdx
⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space$$\frac{(sinx+cosx)}{\sqrt{-(-sin2x)}}dx
⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space$$\frac{sinx+cosx}{\sqrt{-(-1+1-2sinxcosx)}}dx
⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space$$\frac{(sinx+cosx)}{\sqrt{1-(sin^{2}x+cos^{2}x-2sinxcosx)}}dx
⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space $$\frac{(sinx+cosx)dx}{\sqrt{1-(sinx-cosx)^{2}}}
Let(sinx−cosx)=t⇒(sinx+cosx)dx=dt
Whenx=6π,t=(21−3)andwhenx=3π,t=(23−1)
I=∫21−323−11−t2dt
⇒$$I=\int_{-({\frac{\sqrt{3}-1}{2})}}^{\frac{\sqrt{3}-1}{2}} \frac{dt}{\sqrt{1-t^{2}}}
As1−(−t)21=1−t21,therefore,1−t21isanevenfunction.
It is known that if f(x) is an even function,then∫−aaƒ(x)dx=2∫0aƒ(x)dx
⇒I=2∫023−11−t2dt
=[2sin−1t]02√3−1
=2sin−1(23−1)