Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: π3π6sinx+cosxsin2xdx\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\frac{sinx+cosx}{\sqrt{sin2x}}dx

Answer

Let  I=π3π6sinx+cosxsin2xdxLet\space I=\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\frac{sinx+cosx}{\sqrt{sin2x}}dx

⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space$$\frac{(sinx+cosx)}{\sqrt{-(-sin2x)}}dx

⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space$$\frac{sinx+cosx}{\sqrt{-(-1+1-2sinxcosx)}}dx

⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space$$\frac{(sinx+cosx)}{\sqrt{1-(sin^{2}x+cos^{2}x-2sinxcosx)}}dx

⇒I=$$\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\space $$\frac{(sinx+cosx)dx}{\sqrt{1-(sinx-cosx)^{2}}}

Let(sinxcosx)=t(sinx+cosx)dx=dtLet(sinx-cosx)=t⇒(sinx+cosx)dx=dt

Whenx=π6,t=(132)andwhenx=π3,t=(312)When x=\frac{\pi}{6},t=(\frac{1-\sqrt{3}}{2})and when x=\frac{\pi}{3},t=(\frac{\sqrt{3}-1}{2})

I=132312dt1t2I=\int_{\frac{1-\sqrt{3}}{2}}^{\frac{\sqrt{3}-1}{2}} \frac{dt}{\sqrt{1-t^{2}}}

⇒$$I=\int_{-({\frac{\sqrt{3}-1}{2})}}^{\frac{\sqrt{3}-1}{2}} \frac{dt}{\sqrt{1-t^{2}}}

As11(t)2=11t2,therefore,11t2is  an  even  function.As \frac{1}{\sqrt{1-(-t)^{2}}}=\frac{1}{\sqrt{1-t^{2}}},therefore,\frac{1}{\sqrt{1-t^{2}}} is \space an\space even \space function.

It is known that if f(x)f(x) is an even function,thenaaƒ(x)dx=20aƒ(x)dx\int^{a}_{-a}ƒ(x)dx=2\int^{a}_{0}ƒ(x)dx

I=20312dt1t2⇒I=2\int^{\frac{\sqrt{3}-1}{2}}_{0} \frac{dt}{\sqrt{1-t^{2}}}

=[2sin1t]0312=[2sin^{-1}t]^{\frac{√3-1}{2}}_{0}

=2sin1(312)=2sin^{-1}(\frac{\sqrt{3}-1}{2})