Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π4sinx+cosx9+16sin2xdx\int_{0}^{\frac{\pi}{4}}\frac{sinx+cosx}{9+16sin2x}dx

Answer

Let  I=0π4sinx+cosx9+16sin2xdxLet\space I=\int_{0}^{\frac{\pi}{4}}\frac{sinx+cosx}{9+16sin2x}dx

Also,let sinxcosx=t(cosx+sinx)dx=dtsinx-cosx=t⇒(cosx+sinx)dx=dt

Whenx=0,t=1 x=0,t=-1 and when x=π4,t=0x=\frac{\pi}{4},t=0

(sinxcosx)2=t2⇒(sinx-cosx)^{2}=t^{2}

sin2x+cos2x2sinxcosx=t2⇒sin^{2}x+cos^{2}x-2sinxcosx=t^{2}

1sin2x=t2⇒1-sin2x=t^{2}

sin2x=1t2⇒sin2x=1-t^{2}

I=10dt9+16(1t2)∴I=\int_{-1}^{0}\frac{dt}{9+16(1-t^{2})}

=10dt9+1616t2=\int_{-1}^{0}\frac{dt}{9+16-16t^{2}}

=10dt2516t2=10dt(5)2(4t)2=\int_{-1}^{0}\frac{dt}{25-16t^{2}}=\int_{-1}^{0}\frac{dt}{(5)^{2}-(4t)^{2}}

=14[12(5)log5+4t54t]10=\frac{1}{4}[\frac{1}{2(5)}log|\frac{5+4t}{5-4t}|]_{-1}^{0}

=140[log(1)log19]=\frac{1}{40}[log(1)-log|\frac{1}{9}|]

=140log9=\frac{1}{40}log9