Question
Mathematics Question on integral
Evaluate the definite integral: ∫04π9+16sin2xsinx+cosxdx
Answer
LetI=∫04π9+16sin2xsinx+cosxdx
Also,let sinx−cosx=t⇒(cosx+sinx)dx=dt
Whenx=0,t=−1 and when x=4π,t=0
⇒(sinx−cosx)2=t2
⇒sin2x+cos2x−2sinxcosx=t2
⇒1−sin2x=t2
⇒sin2x=1−t2
∴I=∫−109+16(1−t2)dt
=∫−109+16−16t2dt
=∫−1025−16t2dt=∫−10(5)2−(4t)2dt
=41[2(5)1log∣5−4t5+4t∣]−10
=401[log(1)−log∣91∣]
=401log9