Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π2cos2xdxcos2x+4sin2x\int_{0}^{\frac{\pi}{2}}\frac{cos^{2}xdx}{cos^{2}x+4sin^{2}x}

Answer

Let  I=0π2cos2xdxcos2x+4sin2xLet\space I=\int_{0}^{\frac{\pi}{2}}\frac{cos^{2}xdx}{cos^{2}x+4sin^{2}x}

I=0π2cos2xcos2x+4(1cos2x)dx⇒I=\int_{0}^{\frac{\pi}{2}}\frac{cos^{2}x}{cos^{2}x+4(1-cos^{2}x)}dx

I=0π2cos2xcos2x+44cos2xdx⇒I=∫^{\frac{π}{2}}_0\frac{cos^2x}{cos^2x+4-4cos^2x}dx

I=130π243cos2x443cos2xdx⇒I=\frac{-1}{3}∫^{\frac{π}{2}}_0 \frac{4-3cos^2x-4}{4-3cos^2x}dx

I=130π243cos2x43cos2xdx+130π2443cos2xdx⇒I=\frac{-1}{3}∫^{\frac{π}{2}}_0 \frac{4-3cos^2x}{4-3cos^2x}dx+\frac{1}{3}∫^{\frac{π}{2}}_0\frac{4}{4-3cos^2x}dx

I=130π21dx+130π24sec2x4sec2x3dx⇒I=\frac{-1}{3}∫^{\frac{π}{2}}_0 1dx+\frac{1}{3}∫^{\frac{π}{2}}_0 \frac{4sec^2x}{4sec^2x-3}dx

I=13[x]0π2+130π24sec2x4(1+tan2x)3dx⇒I=\frac{-1}{3}[x]^{\frac{π}{2}}_0+\frac{1}{3}∫^{\frac{π}{2}}_0 \frac{4sec^2x}{4(1+tan^2x)-3}dx

I=π6+230π22sec2x1+4tan2xdx...(1)⇒I=-\frac{π}{6}+\frac{2}{3}∫^{\frac{π}{2}}_0 \frac{2sec^2x}{1+4tan^2x}dx...(1)

Consider,0π22sec2x1+4tan2xdx∫^\frac{π}{2}_0 \frac{2sec^2x}{1+4tan^2x}dx

Let 2tanx=t2sec2xdx=dt2tanx=t⇒2sec^2xdx=dt

When x=0,t=0x=0,t=0 and when x=π2,t=x=\frac{π}{2},t=∞

0π22sec2x1+4tan2xdx=0dt1+t2⇒∫^{\frac{π}{2}}_0 \frac{2sec^2x}{1+4tan^2x}dx=∫^∞_0\frac{dt}{1+t^2}

=[tan1t]0=[tan^{-1}t]^∞_0

=[tan1()tan1(0)]=[tan^{-1}(∞)-tan^{-1}(0)]
=π2=\frac{π}{2}

Therefore,from(1),we obtain

I=π6+23[π2]=π3π6=π6I=-\frac{π}{6}+\frac{2}{3}[\frac{π}{2}]=\frac{π}{3}-\frac{π}{6}=\frac{π}{6}