Question
Mathematics Question on integral
Evaluate the definite integral: ∫02πcos2x+4sin2xcos2xdx
Answer
LetI=∫02πcos2x+4sin2xcos2xdx
⇒I=∫02πcos2x+4(1−cos2x)cos2xdx
⇒I=∫02πcos2x+4−4cos2xcos2xdx
⇒I=3−1∫02π4−3cos2x4−3cos2x−4dx
⇒I=3−1∫02π4−3cos2x4−3cos2xdx+31∫02π4−3cos2x4dx
⇒I=3−1∫02π1dx+31∫02π4sec2x−34sec2xdx
⇒I=3−1[x]02π+31∫02π4(1+tan2x)−34sec2xdx
⇒I=−6π+32∫02π1+4tan2x2sec2xdx...(1)
Consider,∫02π1+4tan2x2sec2xdx
Let 2tanx=t⇒2sec2xdx=dt
When x=0,t=0 and when x=2π,t=∞
⇒∫02π1+4tan2x2sec2xdx=∫0∞1+t2dt
=[tan−1t]0∞
=[tan−1(∞)−tan−1(0)]
=2π
Therefore,from(1),we obtain
I=−6π+32[2π]=3π−6π=6π