Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π4(sinxcosxcos4x+sin4x)dx\int_{0}^{\frac{\pi}{4}}(\frac{sinxcosx}{cos^{4}x+sin^{4}x})dx

Answer

Let  I=0π4(sinxcosxcos4x+sin4x)dxLet \space I =\int_{0}^{\frac{\pi}{4}}(\frac{sinxcosx}{cos^{4}x+sin^{4}x})dx

I=0π4(sinxcosx)cos4x(cos4x+sin4x)cos4xdx⇒I=\int_{0}^{\frac{\pi}{4}}\frac{\frac{(sinxcosx)}{cos^{4}x}}{\frac{(cos^{4}x+sin^{4}x)}{cos^{4}x}}dx

I=0π4tanxsec2x1+tan4xdx⇒I=\int_{0}^{\frac{\pi}{4}}\frac{tanxsec^{2}x}{1+tan^{4}x}dx

Let  tan2x=t2tanxsec2xdx=dtLet \space tan^{2}x=t⇒2tanxsec^{2}xdx=dt

Whenx=0,t=0  and  when  x=π4,t=1When x=0,t=0 \space and \space when \space x=\frac{\pi}{4},t=1

I=1201dt1+t2∴I=\frac{1}{2}\int_{0}^{1}\frac{dt}{1+t^{2}}

=12[tan1t]01=\frac{1}{2}[tan^{-1}t]_{0}^{1}

=12[tan11tan10]=\frac{1}{2}[tan^{-1}1-tan^{-1}0]

=12[π4]=\frac{1}{2}[\frac{\pi}{4}]

=π8=\frac{\pi}{8}