Question
Mathematics Question on integral
Evaluate the definite integral: ∫04π(cos4x+sin4xsinxcosx)dx
Answer
LetI=∫04π(cos4x+sin4xsinxcosx)dx
⇒I=∫04πcos4x(cos4x+sin4x)cos4x(sinxcosx)dx
⇒I=∫04π1+tan4xtanxsec2xdx
Lettan2x=t⇒2tanxsec2xdx=dt
Whenx=0,t=0andwhenx=4π,t=1
∴I=21∫011+t2dt
=21[tan−1t]01
=21[tan−11−tan−10]
=21[4π]
=8π