Question
Mathematics Question on integral
Evaluate the definite integral: ∫011+x−xdx
Answer
Let\space I=$$\int_{0}^{1}\frac{dx}{\sqrt{1+x}-\sqrt{x}}
I=\int_{0}^{1}$$\frac{1}{(\sqrt{1+x}-\sqrt{x})}\times\frac{(\sqrt{1+x}+\sqrt{x})}{(\sqrt{1+x}+\sqrt{x})}dx
=$$\int_{0}^{1}$$\frac{\sqrt{1+x}+\sqrt{x}}{1+x-x}dx
=\int_{0}^{1}$$\sqrt{1+x}dx+\int_{0}^{1}\sqrt{x}dx
=[\frac{2}{3}(1+x)^{\frac{3}{2}}]_{0}^{1}$$+[\frac{2}{3}(x)^{\frac{3}{2}}]_{0}^{1}
=32[(2)32−1]+32[1]
=31(2)23
=32.22
=342