Solveeit Logo

Question

Question: Evaluate the definite integral given as \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \...

Evaluate the definite integral given as 13[x1+x2+x3]dx\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx.

Explanation

Solution

We start solving the problems by recalling the properties of modulus function and we write functions for x1\left| x-1 \right|, x2\left| x-2 \right| and x3\left| x-3 \right| in the intervals that were present as limits for definite integral. We divide the definite integral into two or more parts based on the modulus functions obtained. We substitute the functions obtained in the place of modulus functions in integral. Now, we do the integration and substitute the limits to get the required value.

Complete step-by-step solution:
According to the problem, we need to find the value of the definite integral 13[x1+x2+x3]dx\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx ------(1).
Let us first learn about the properties of modulus function. We know that the value of xa\left| x-a \right| varies as \left| x-a \right|=\left\\{ \begin{matrix} \left( x-a \right)\text{, for x> a} \\\ 0\text{, for x=a} \\\ -\left( x-a \right)\text{, for x< a} \\\ \end{matrix} \right..
Using the properties of xa\left| x-a \right|, we check the variations of functions x1\left| x-1 \right|, x2\left| x-2 \right| and x3\left| x-3 \right| in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 1 and 3 i.e., 1<x<31< x< 3.
We find the variation in function for x1\left| x-1 \right| in the interval 1<x<31< x <3.
So, the function x1\left| x-1 \right| is written as \left| x-1 \right|=\left\\{ \left( x-1 \right)\text{, for }1< x <3 \right. ---------(2).
Now, we find the variation in function for x2\left| x-2 \right| in the interval 1<x<31< x <3.
So, the function x2\left| x-2 \right| is written as \left| x-2 \right|=\left\\{ \begin{matrix} -\left( x-2 \right),\text{ for }1< x< 2 \\\ \left( x-2 \right),\text{ for }2< x< 3 \\\ \end{matrix} \right. ------(3).
Now, we find the variation in function for x3\left| x-3 \right| in the interval 1<x<31< x <3.
So, the function x3\left| x-3 \right| is written as \left| x-3 \right|=\left\\{ -\left( x-3 \right),\text{ for }1< x <3 \right. ---(4).
We know that for a< b Now, we divide the given definite integral into two intervals as shown below: $$\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx+\int\limits_{2}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx$$. Now, we use the functions that we have obtained in equation (2), (3), and (4) in the given definite integral. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left( x-1 \right)-\left( x-2 \right)-\left( x-3 \right) \right]}dx+\int\limits_{2}^{3}{\left[ \left( x-1 \right)+\left( x-2 \right)-\left( x-3 \right) \right]}dx$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ x-1-x+2-x+3 \right]}dx+\int\limits_{2}^{3}{\left[ x-1+x-2-x+3 \right]}dx$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ -x+4 \right]}dx+\int\limits_{2}^{3}{\left[ x \right]}dx$$ --------(5). We know that \int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c},, \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}andand\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right). We use all these results in equation (5). $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left. \dfrac{-{{\left( 4-x \right)}^{2}}}{2} \right|_{1}^{2}+\left. \dfrac{{{x}^{2}}}{2} \right|_{2}^{3}$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-{{\left( 4-2 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 4-1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{3}^{2}}}{2} \right)-\left( \dfrac{{{2}^{2}}}{2} \right)$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4}{2} \right)+\left( \dfrac{9}{2} \right)+\left( \dfrac{9}{2} \right)-\left( \dfrac{4}{2} \right)$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4+9+9-4}{2} \right)$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{10}{2} \right)$$. $$\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=5$$. **\therefore$We have got the value of definite integral 13[x1+x2+x3]dx\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx as 5.**

Note: We should not take []\left[ { } \right] as greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 1 to 3 as the functions are changing. We should not make mistakes or confuse with the sign changes that were present while integrating.