Question
Question: Evaluate the definite integral given as \[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \...
Evaluate the definite integral given as 2∫5[∣x−2∣+∣x−3∣+∣x−5∣]dx.
Solution
We start solving the problem by recalling the properties of modulus function and we write functions for ∣x−2∣, ∣x−3∣ and ∣x−5∣ in the intervals that were present as limits for definite integral. We divide the definite integral into two or more parts based on the modulus functions obtained. We substitute the functions obtained in the place of modulus functions in integral. Now, we do the integration and substitute the limits to get the required value
** Complete step-by-step answer :**
According to the problem, we need to find the value of the definite integral 2∫5[∣x−2∣+∣x−3∣+∣x−5∣]dx ---(1).
Let us first learn about the properties of modulus function. We know that the value of ∣x−a∣ varies as \left| x-a \right|=\left\\{ \begin{matrix}
\left( x-a \right)\text{, for xa} \\\
0\text{, for x=a} \\\
-\left( x-a \right)\text{, for xa} \\\
\end{matrix} \right..
Using the properties of ∣x−a∣, we check the variations of functions ∣x−2∣, ∣x−3∣ and ∣x−5∣ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 2 and 5 i.e., 2Wefindthevariationinfunctionfor\left| x-2 \right|intheinterval2So, the function ∣x−2∣ is written as \left| x-2 \right|=\left\\{ \left( x-2 \right)\text{, for }2Now, we find the variation in function for $\left| x-3 \right|$ in the interval $2So, the function $\left| x-3 \right|$ is written as \[\left| x-3 \right|=\left\\{ \begin{matrix}
-\left( x-3 \right),\text{ for }2 \left( x-3 \right),\text{ for }3\end{matrix} \right. ---(3).
Now, we find the variation in function for ∣x−5∣ in the interval 2So,thefunction\left| x-5 \right|is written as $$\left| x-5 \right|=\left\\{ -\left( x-5 \right),\text{ for }2We know that foraNow, we divide the given definite integral into two intervals as shown below:
[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx+\int\limits_{3}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx.Now,weusethefunctionsthatwehaveobtainedinequation(2),(3)and(4)inthegivendefiniteintegral.\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ \left( x-2 \right)-\left( x-3 \right)-\left( x-5 \right) \right]}dx+\int\limits_{3}^{5}{\left[ \left( x-2 \right)+\left( x-3 \right)-\left( x-5 \right) \right]}dx.\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ x-2-x+3-x+5 \right]}dx+\int\limits_{3}^{5}{\left[ x-2+x-3-x+5 \right]}dx.\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ -x+6 \right]}dx+\int\limits_{3}^{5}{\left[ x \right]}dx---(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left. \dfrac{-{{\left( 6-x \right)}^{2}}}{2} \right|{2}^{3}+\left. \dfrac{{{x}^{2}}}{2} \right|{3}^{5}.\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-{{\left( 6-3 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 6-2 \right)}^{2}}}{2} \right)+\left( \dfrac{{{5}^{2}}}{2} \right)-\left( \dfrac{{{3}^{2}}}{2} \right).\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-9}{2} \right)+\left( \dfrac{16}{2} \right)+\left( \dfrac{25}{2} \right)-\left( \dfrac{9}{2} \right).\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-9+16+25-9}{2} \right).\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{23}{2} \right).∗∗∴Wehavegotthevalueofdefiniteintegral\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dxas\left( \dfrac{23}{2} \right)$$.**
Note : We should not take [] as the greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 2 to 5 as the functions are changing. We should not make mistakes or confuse ourselves with the sign changes that were present while integrating.