Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π4sin2xdx∫^{\frac{\pi}{4}}_0 sin2xdx

Answer

Let I=0π4sin2xdx∫^{\frac{\pi}{4}}_0 sin2xdx

sin2xdx=cos2x2=F(x)∫sin2xdx=\frac{-cos2x}{2}=F(x)

By second fundamental theorem of calculus,we obtain

I=F(π4)F(0)I=F(\frac{π}{4})-F(0)

=12[cos2(π4)cos0]=-\frac{1}{2}[cos2(\frac{π}{4})-cos0]

=12[cos(π2)cos0]=-\frac{1}{2}[cos(\frac{π}{2})-cos0]

=12[01]=-\frac{1}{2}[0-1]

=12=\frac{1}{2}