Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: π6π4cosecxdx∫^\frac{π}{4}_\frac{π}{6} cosec x dx

Answer

Let I=π6π4cosecxdx∫^\frac{π}{4}_\frac{π}{6} cosec x dx.

cosecxdx=logcosecxcotx=F(x)∫cosec x dx=log|cosec x-cot x|=F(x)

By second fundamental theorem of calculus,we obtain

I=F(π4)F(π6)I=F(\frac{π}{4})-F(\frac{π}{6})

=logcosecπ/4cotπ4logcosecπ6cotπ6=log|cosec π/4-cot \frac{π}{4}|-log|cosec\frac{π}{6}-cot\frac{π}{6|}

=log21log23=log|√2-1|-log|2-√3|

=log(2123)=log(\frac{√2-1}{2-√3})