Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π2cos2xdx∫^\frac{π}{2}_0 cos^2 x dx

Answer

Let I=0π2cos2xdx∫^\frac{π}{2}_0 cos^2 x dx

cos2xdx=(1+cos2x2)dx=x2+sin2x4=12(x+sin2x2)=F(x)∫cos^2 x dx=∫(\frac{1+cos2x}{2})dx=\frac{x}{2}+\frac{sin2x}{4}=\frac{1}{2}(x+\frac{sin2x}{2})=F(x)

By second fundamental theorem of calculus,we obtain

I=[F(π2)F(0)]I=[F(\frac{π}{2})-F(0)]

=12[(π2)sinπ2)(0+sin02)]=\frac{1}{2}[(\frac{π}{2})-\frac{sinπ}{2})-(0+\frac{sin0}{2})]

=12[π2+000]=\frac{1}{2}[\frac{π}{2}+0-0-0]

=π4=\frac{π}{4}