Question
Mathematics Question on integral
Evaluate the definite integral: ∫02πcos2xdx
Answer
Let I=∫02πcos2xdx
∫cos2xdx=∫(21+cos2x)dx=2x+4sin2x=21(x+2sin2x)=F(x)
By second fundamental theorem of calculus,we obtain
I=[F(2π)−F(0)]
=21[(2π)−2sinπ)−(0+2sin0)]
=21[2π+0−0−0]
=4π