Question
Mathematics Question on integral
Evaluate the definite integral as limit of sums: ∫04(x+e2x)dx
Answer
The correct answer is:215+e8
It is known that,
∫abƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)+...+ƒ(a+(n−1)h)],where h=b-a/n
Here,a=0,b=4,and ƒ(x)=x+e2x
∴h=n4−0=n4
⇒∫04(x+e2x)dx=(4−0)n→∞limn1[ƒ(0)+ƒ(h)+ƒ(2h)+...+ƒ((n−1)h)]
=4n→∞limn1[(0+e°)+(n+e2h)+(2h+e2.2h)+...+[(n−1)h+e2(n−1)h]]
=4n→∞limn1[1+(h+e2h)+(2h+e4h)+...+[(n−1)h+e2(n−1)h]]
=4n→∞limn1[[h+2h+3h+...+(n−1)h]+(1+e2h+e4h+...+e2(n−1)h)]
=4n→∞limn1[h[1+2+...(n−1)]+e2h−1)(e2hn−1]
=4n→∞limn1[2(h(n−1)n)+(e2h−1e2hn−1)]
=4n→∞limn1[n4.2(n−1)n+(en8−1e8−1)]
=4(2)+4n→∞lim(n8en8−1)8(e8−1)
=8+2e8−1
=215+e8