Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral as limit of sums: 11exdx∫^1_{-1} e^xdx

Answer

The correct answer is:=(e1e)=(e-\frac{1}{e})
Let I=11exdx...(1)I=∫^1_{-1} e^xdx...(1)
It is known that,
abƒ(x)dx=(ba)limn1n[ƒ(a)+ƒ(a+h)...ƒ((a+(n1)h]∫^b_a ƒ(x)dx=(b-a)\underset{n→∞}{lim}\frac{1}{n}[ƒ(a)+ƒ(a+h)...ƒ((a+(n-1)h],where h=banh=\frac{b-a}{n}
Here,a=1,b=1,a=-1,b=1,and ƒ(x)=exƒ(x)=e^x
h=1+1n=2n∴h=\frac{1+1}{n}=\frac{2}{n}
I=(1+1)limn1n[ƒ(1)+ƒ(1+2n)+ƒ(1+2.2n)+...+ƒ(1+(n1)2n)]∴I=(1+1)\underset{n→∞}{lim}\frac{1}{n}[ƒ(-1)+ƒ(-1+\frac{2}{n})+ƒ(-1+2.\frac{2}{n})+...+ƒ(-1+\frac{(n-1)2}{n})]
=2limn1n[e1+e(1+2n)+e(1+22n)+...e(1+(n1)2n)]=2\underset{n→∞}{lim}\frac{1}{n}[e^{-1}+e^{(-1+\frac{2}{n})}+e^{(-1+2\frac{2}{n})}+...e^{(-1+(n-1)\frac{2}{n})}]
=2limn1n[e11+e2n+e4n+e6n+e(n1)2n]=2\underset{n→∞}{lim}\frac{1}{n}[e^{-1}{1+e^{\frac{2}{n}}+e^{\frac{4}{n}}+e^{\frac{6}{n}}+e^{(n-1)\frac{2}{n}}}]
=2limne1n[e2nn1e2n1]=2\underset{n→∞}{lim}\frac{e^{-1}}{n}[\frac{e^{\frac{2n}{n}-1}}{e^{\frac{2}{n}-1}}]
=e1×2limn1n[e21e2n1]=e^{-1}\times2\underset{n→∞}{lim}\frac{1}{n}[\frac{e^{2-1}}{e^{\frac{2}{n}-1}}]
=e1×2(e21)lim2n0(e2n12n)×2=\frac{e^{-1}×2(e^2-1)}{\underset{\frac{2}{n}→0}{lim}(\frac{e^{\frac{2}{n}-1}}{\frac{2}{n}})\times2}
=e1[2(e21)2][limh0(eh1h)=1]=e^{-1}[\frac{2(e^2-1)}{2}]\,\,\,\,\,\, [\underset{h→0}{lim}(\frac{e^h-1}{h})=1]
=e21e=\frac{e^2-1}{e}
=(e1e)=(e-\frac{1}{e})