Question
Mathematics Question on integral
Evaluate the definite integral as limit of sums: ∫−11exdx
Answer
The correct answer is:=(e−e1)
Let I=∫−11exdx...(1)
It is known that,
∫abƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)...ƒ((a+(n−1)h],where h=nb−a
Here,a=−1,b=1,and ƒ(x)=ex
∴h=n1+1=n2
∴I=(1+1)n→∞limn1[ƒ(−1)+ƒ(−1+n2)+ƒ(−1+2.n2)+...+ƒ(−1+n(n−1)2)]
=2n→∞limn1[e−1+e(−1+n2)+e(−1+2n2)+...e(−1+(n−1)n2)]
=2n→∞limn1[e−11+en2+en4+en6+e(n−1)n2]
=2n→∞limne−1[en2−1en2n−1]
=e−1×2n→∞limn1[en2−1e2−1]
=n2→0lim(n2en2−1)×2e−1×2(e2−1)
=e−1[22(e2−1)][h→0lim(heh−1)=1]
=ee2−1
=(e−e1)