Question
Mathematics Question on integral
Evaluate the definite integral as limit of sums: ∫14(x2−x)dx
The correct answer is:227
Let I=∫14(x2−x)dx
=∫14x2dx−∫14xdx
Let I=I1−I2,where,I1=∫14x2dx and I2=∫14xdx...(1)
It is known that,
∫abƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)+ƒ(a+(n−1)h)],whereh=nb−a
For I1=∫14x2dx,
a=1,b=4,and ƒ(x)=x2
∴h=n4−1=n3
I1=∫14x2dx=(4−1)n→∞limn1[ƒ(1)+ƒ(1+h)+...+ƒ(1+(n−1)h)]
=3n→∞limn1[12+(1+n3)2+(1+2.n3)2+...(1+(n(n−1)3)2]
=3n→∞limn1[12+[12+(n3)2+2.n3]+...+[12+(n(n−1)3)2+n2.(n−1).3]]
=3n→∞limn1[(ntimes12+......+12)+(n3)2[12+22+...+(n−1)2]+2.n3[1+2+...+(n−1)]]
=3n→∞limn1[n+n29[6(n−1)(n)(2n−1)]+n6[2(n−1)(n)]]
=3n→∞limn1[n+69n(1−n1)(2−n1)+26n−6]
=3n→∞limn1[1+69(1−n1)(2−n1)+3−n3]
=3[1+3+3]
=3[7]
I1=21...(2)
For I2=∫14xdx,
a=1,b=4,and ƒ(x)=x
⇒h=4-1/n=3/n
∴I2=(4−1)n→∞limn1[ƒ(1)+ƒ(1+h)+...ƒ(a+(n−1)h)]=3limn→∞1/n[[1+(1+h)+...+(1+(n-1)h)]
=3n→∞limn1[1+(1+n3)+...+1+(n−1)n3]
=3n→∞limn1[(ntimes1+1+...+1)+n3((1+2+...+(n−1))]
=3n→∞limn1[n+n3[2(n−1)n]]
=3n→∞limn1[1+23(1−n1)]
=3[1+23]
=3[25]
I2=215...(3)
From equation,(2)and(3),we obtain
I=I1+I2=21−215=227