Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral as limit of sums: 14(x2x)dx∫^4_1(x^2-x)dx

Answer

The correct answer is:272\frac{27}{2}
Let I=14(x2x)dxI=∫^4_1(x^2-x)dx
=14x2dx14xdx=∫^4_1x^2 dx-∫^4_1 xdx
Let I=I1I2I=I_1-I_2,where,I1=14x2dxI_1=∫^4_1 x^2dx and I2=14xdx...(1)I_2=∫^4_1 x\,dx...(1)
It is known that,
abƒ(x)dx=(ba)limn1n[ƒ(a)+ƒ(a+h)+ƒ(a+(n1)h)],whereh=ban∫_a^b ƒ(x)dx=(b-a)\underset{n→∞}{lim}\frac{1}{n}[ƒ(a)+ƒ(a+h)+ƒ(a+(n-1)h)],where\, h=\frac{b-a}{n}
For I1=14x2dx,I_1=∫^4_1 x^2dx,
a=1,b=4a=1,b=4,and ƒ(x)=x2ƒ(x)=x^2
h=41n=3n∴h=\frac{4-1}{n}=\frac{3}{n}
I1=14x2dx=(41)limn1n[ƒ(1)+ƒ(1+h)+...+ƒ(1+(n1)h)]I_1=∫^4_1 x^2dx=(4-1)\underset{n→∞}{lim}\frac{1}{n}[ƒ(1)+ƒ(1+h)+...+ƒ(1+(n-1)h)]
=3limn1n[12+(1+3n)2+(1+2.3n)2+...(1+((n1)3n)2]=3\underset{n→∞}{lim}\frac{1}{n}[1^2+(1+\frac{3}{n})^2+(1+2.\frac{3}{n})^2+...(1+(\frac{(n-1)3}{n})^2]
=3limn1n[12+[12+(3n)2+2.3n]+...+[12+((n1)3n)2+2.(n1).3n]]=3\underset{n→∞}{lim}\frac{1}{n}[1^2+[1^2+(\frac{3}{n})^2+2.\frac{3}{n}]+...+[1^2+(\frac{(n-1)3}{n})^2+\frac{2.(n-1).3}{n}]]
=3limn1n[(12+......+12ntimes)+(3n)2[12+22+...+(n1)2]+2.3n[1+2+...+(n1)]]=3\underset{n→∞}{lim}\frac{1}{n}[(\underset{n times}{1^2+......+1^2})+(\frac{3}{n})^2[1^2+2^2+...+(n-1)^2]+2.\frac{3}{n}[1+2+...+(n-1)]]
=3limn1n[n+9n2[(n1)(n)(2n1)6]+6n[(n1)(n)2]]=3\underset{n→∞}{lim}\frac{1}{n}[n+\frac{9}{n^2}[\frac{(n-1)(n)(2n-1)}{6}]+\frac{6}{n}[\frac{(n-1)(n)}{2}]]
=3limn1n[n+9n6(11n)(21n)+6n62]=3\underset{n→∞}{lim}\frac{1}{n}[n+\frac{9n}{6}(1-\frac{1}{n})(2-\frac{1}{n})+\frac{6n-6}{2}]
=3limn1n[1+96(11n)(21n)+33n]=3\underset{n→∞}{lim}\frac{1}{n}[1+\frac{9}{6}(1-\frac{1}{n})(2-\frac{1}{n})+3-\frac{3}{n}]
=3[1+3+3]=3[1+3+3]
=3[7]=3[7]
I1=21...(2)I_1=21...(2)
For I2=14xdx,I_2=∫^4_1 x\,dx,
a=1,b=4,a=1,b=4,and ƒ(x)=xƒ(x)=x
⇒h=4-1/n=3/n
I2=(41)limn1n[ƒ(1)+ƒ(1+h)+...ƒ(a+(n1)h)]∴I_2=(4-1)\underset{n→∞}{lim}\frac{1}{n}[ƒ(1)+ƒ(1+h)+...ƒ(a+(n-1)h)]=3limn→∞1/n[[1+(1+h)+...+(1+(n-1)h)]
=3limn1n[1+(1+3n)+...+1+(n1)3n]=3\underset{n→∞}{lim}\frac{1}{n}[1+(1+\frac{3}{n})+...+{1+(n-1)\frac{3}{n}}]
=3limn1n[(1+1+...+1ntimes)+3n((1+2+...+(n1))]=3\underset{n→∞}{lim}\frac{1}{n}[(\underset{n times}{1+1+...+1})+\frac{3}{n}((1+2+...+(n-1))]
=3limn1n[n+3n[(n1)n2]]=3\underset{n→∞}{lim}\frac{1}{n}[n+\frac{3}{n}[\frac{(n-1)n}{2}]]
=3limn1n[1+32(11n)]=3\underset{n→∞}{lim}\frac{1}{n}[1+\frac{3}{2}(1-\frac{1}{n})]
=3[1+32]=3[1+\frac{3}{2}]
=3[52]=3[\frac{5}{2}]
I2=152...(3)I_2=\frac{15}{2}...(3)
From equation,(2)and(3),we obtain
I=I1+I2=21152=272I=I_1+I_2=21-\frac{15}{2}=\frac{27}{2}