Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral as limit of sums: 01xex2dx∫^1_0 xe^{x^2} dx

Answer

LetI=01xex2dxLet\, I=∫^1_0 xe^{x^2} dx

Putx2=t2xdx=dtPut\, x^2=t⇒2x\, dx=dt

Asx0,t0andasx1,t1,As\, x→0,t→0 \,and\, as\, x→1,t→1,

I=1201etdt∴I=\frac{1}{2}∫^1_0e^t dt

12etdt=12et=F(t)\frac{1}{2}∫e^tdt=\frac{1}{2}e^t=F(t)

By second fundamental theorem of calculus,we obtain

I=F(1)F(0)I=F(1)-F(0)

=12e12e°=\frac{1}{2}e-\frac{1}{2}e°

=12(e1)=\frac{1}{2}(e-1)