Question
Mathematics Question on integral
Evaluate the definite integral as limit of sums: ∫23x2dx
Answer
The correct answer is: 319
It is known that,
∫abƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)+ƒ(a+2h)....ƒa+(n−1)h],whereh=nb−a
Here,a=2,b=3,and ƒ(x)=x2
⇒h=n3−2=n1
∴∫23x2dx=(3−2)n→∞limn1[ƒ(2)+ƒ(2+n1)+ƒ(2+n2)...ƒ[2+(n−1)n1]]
=n→∞limn1[(2)2+(2+n1)2+(2+n2)2+...(2+n(n−1)2)]
=n→∞limn1[22+[22+(n1)2+2.2.n1]+...+[(2)2+n2(n−1)2+2.2.n(n−1)]]
=n→∞limn1[(ntimes22+....+22)+(n1)2+(n2)2+...+(nn−1)2+2.2.[n1+n2+n3+...+n(n−1)]]
=n→∞limn1[4n+n21[12+22+32+...+(n−1)2]+n4[1+2+...+(n−1)]]
=n→∞limn1[4n+n21[6n(n−1)(2n−1)]+n4[2n(n−1)]
=n→∞limn1[[4n+6n(1−n1)(2−n1)+24n−4]
=n→∞lim[4+61(1−n1)(2−n1)+2−n2]
=4+62+2
=319