Question
Mathematics Question on integral
Evaluate the definite integral as limit of sums: ∫05(x+1)dx
Answer
The correct answer is: 235
Let I=∫05(x+1)dx
It is known that,
∫05ƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)...ƒ(a+(n−1)h)],where h=nb−a
Here,a=0,b=5,and ƒ(x)=(x+1)
⇒h=n5−0=n5
∴∫05(x+1)dx=(5−0)n→∞limn1[ƒ(0)+ƒ(n5)+...+f((n−1)n5)]
=5n→∞limn1[1+(n5+1)+...[1+(n5(n−1))]]
=5n→∞limn1[(ntimes1+1+1...1)+[n5+2.n5+3.n5+...(n−1)n5]]
=5n→∞limn1[n+n5[1+2+3...(n−1)]]
=5n→∞limn1[n+n5.2(n−1)n]
=5n→∞limn1[n+.25(n−1)n]
=5n→∞lim[1+25(1−n1)]
=5[1+25]
=5[27]
=235