Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral as limit of sums: 05(x+1)dx∫^5_0(x+1)dx

Answer

The correct answer is: 352\frac{35}{2}
Let I=05(x+1)dxI=∫^5_0(x+1)dx
It is known that,
05ƒ(x)dx=(ba)limn1n[ƒ(a)+ƒ(a+h)...ƒ(a+(n1)h)]∫^5_0ƒ(x)dx=(b-a)\underset{n→∞}{lim}\frac{1}{n}[ƒ(a)+ƒ(a+h)...ƒ(a+(n-1)h)],where h=banh=\frac{b-a}{n}
Here,a=0,b=5a=0,b=5,and ƒ(x)=(x+1)ƒ(x)=(x+1)
h=50n=5n⇒h=\frac{5-0}{n}=\frac{5}{n}
05(x+1)dx=(50)limn1n[ƒ(0)+ƒ(5n)+...+f((n1)5n)]∴∫^5_0(x+1)dx=(5-0)\underset{n→∞}{lim}\frac{1}{n}[ƒ(0)+ƒ(\frac{5}{n})+...+f((n-1)\frac{5}{n})]
=5limn1n[1+(5n+1)+...[1+(5(n1)n)]]=5\underset{n→∞}{lim}\frac{1}{n}[1+(\frac{5}{n}+1)+...[1+(\frac{5(n-1)}{n})]]
=5limn1n[(1+1+1...1ntimes)+[5n+2.5n+3.5n+...(n1)5n]]=5\underset{n→∞}{lim}\frac{1}{n}[(\underset{n times}{1+1+1...1})+[\frac{5}{n}+2.\frac{5}{n}+3.\frac{5}{n}+...(n-1)\frac{5}{n}]]
=5limn1n[n+5n[1+2+3...(n1)]]=5\underset{n→∞}{lim}\frac{1}{n}[n+\frac{5}{n}[1+2+3...(n-1)]]
=5limn1n[n+5n.(n1)n2]=5\underset{n→∞}{lim}\frac{1}{n}[n+\frac{5}{n}.\frac{(n-1)n}{2}]
=5limn1n[n+.5(n1)n2]=5\underset{n→∞}{lim}\frac{1}{n}[n+.\frac{5(n-1)n}{2}]
=5limn[1+52(11n)]=5\underset{n→∞}{lim}[1+\frac{5}{2}(1-\frac{1}{n})]
=5[1+52]=5[1+\frac{5}{2}]
=5[72]=5[\frac{7}{2}]
=352=\frac{35}{2}