Question
Mathematics Question on integral
Evaluate the definite integral as limit of sums: ∫abxdx
Answer
The correct answer is: =21(b2−a2)
It is known that,
∫abƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)+...+ƒ(a+(n−1)h)],where h=nb−a
Here,a=a,b=b,and ƒ(x)=x
∴∫abxdx=(b−a)n→∞limn1[a+(a+h)...(a+2h)...a+(n−1)h]
=(b−a)n→∞limn1[(a+a+a+ntimes....+a)+(h+2h+3h+...+(n−1)h]
=(b−a)n→∞limn1[na+h(1+2+3+.....+(n−1))]
=(b−a)n→∞limn1[na+h[2(n−1)(n)]]
=(b−a)n→∞limn1[na+[2n(n−1)(h)]]
=(b−a)n→∞lim[a+[2(n−1)(h)]]
=(b−a)n→∞lim[a+[2n(n−1)(b−a)]]
=(b−a)n→∞lim[a+[2(1−n1)(b−a)]]
=(b−a)[a+2(b−a)]
=(b−a)[22a+b−a]
=2(b−a)(b+a)
=21(b2−a2)