Question
Mathematics Question on integral
Evaluate the definite integral: ∫14[∣x−1∣+∣x−2∣+∣x−3∣]dx
Answer
LetI=∫14[∣x−1∣+∣x−2∣+∣x−3∣]dx
⇒I=∫14∣x−1∣dx+∫14∣x−2∣dx+∫14∣x−3∣dx
I=I1+I2+I3...(1)
Where,I1=∫14∣x−1∣dx,I2=∫14∣x−2∣dx,andI3=∫14∣x−3∣dx
I1=∫14∣x−1∣dx
(x−1)≥0for1≤x≤4
∴I1=∫14(x−1)dx
⇒I1=[xx2−x]14
⇒I1=[8−4−21+1]=29...(2)
I2=∫14∣x−2∣dx
x−2≥0for2≤x≤4andx−2≤0for1≤x≤2
∴I3=∫12(2−x)dx+∫24(x−2)dx
⇒I2=[4−2−2+21]+[8−8−2+4]
⇒I2=21+2=25...(3)
I3=∫14∣x−3∣dx
x−3≥0for3≤x≤4andx−3≤0for1≤x≤3
∴I3=∫13(3−x)dx+∫34(x−3)dx
⇒I3=[3x−2x2]13+[(2x2−3x)]34
⇒I3=[9−29−3+21]+[8−12−29+9]
⇒I3=[6−4]+[21]=25...(4)
Fromequation(1),(2),(3),and(4),weobtain
I=29+25+25=219