Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 14[x1+x2+x3]dx∫^4_1[|x-1|+|x-2|+|x-3|]dx

Answer

LetI=14[x1+x2+x3]dxLet I=∫^4_1[|x-1|+|x-2|+|x-3|]dx

I=14x1dx+14x2dx+14x3dx⇒I=∫^4_1|x-1|dx+∫^4_1|x-2|dx+∫^4_1|x-3|dx

I=I1+I2+I3...(1)I=I_1+I_2+I_3...(1)

Where,I1=14x1dx,I2=14x2dx,andI3=14x3dxWhere,I_1=∫_1^4|x-1|dx,I_2=∫_1^4|x-2|dx,and\, I_3=∫_1^4|x-3|dx

I1=14x1dxI_1=∫_1^4|x-1|dx

(x1)0for1x4(x-1)≥0 for 1≤x≤4

I1=14(x1)dx∴I_1=∫_1^4(x-1)dx

I1=[x2xx]14⇒I_1=[\frac{x^2}{x}-x]_1^4

I1=[8412+1]=92...(2)⇒I_1=[8-4-\frac{1}{2}+1]=\frac{9}{2}...(2)

I2=14x2dxI_2=∫_1^4|x-2|dx

x20for2x4andx20for1x2x-2≥0\, for\, 2≤x≤4\, and\, x-2≤0\, for\, 1≤x≤2

I3=12(2x)dx+24(x2)dx∴I_3=∫_1^2(2-x)dx+∫_2^4(x-2)dx

I2=[422+12]+[882+4]⇒I_2=[4-2-2+\frac{1}{2}]+[8-8-2+4]

I2=12+2=52...(3)⇒I_2=\frac{1}{2}+2=\frac{5}{2}...(3)

I3=14x3dxI_3=∫^4_1|x-3|dx
x30for3x4andx30for1x3x-3\geq0\,for\, 3\leq x \leq4\,and\,x-3\leq0\,for\,1\leq x\leq3
I3=13(3x)dx+34(x3)dx\therefore I_3=\int^3_1(3-x)dx+\int^4_3(x-3)dx

I3=[3xx22]13+[(x223x)]34⇒I_3=[3x-\frac{x^2}{2}]_1^3+[(\frac{x^2}{2}-3x)]^4_3

I3=[9923+12]+[81292+9]⇒I_3=[9-\frac{9}{2}-3+\frac{1}{2}]+[8-12-\frac{9}{2}+9]

I3=[64]+[12]=52...(4)⇒I_3=[6-4]+[\frac{1}{2}]=\frac{5}{2}...(4)

Fromequation(1),(2),(3),and(4),weobtainFrom equation(1),(2),(3),and(4),we obtain

I=92+52+52=192I=\frac{9}{2}+\frac{5}{2}+\frac{5}{2}=\frac{19}{2}