Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 23xdxx2+1∫^3_2\frac{xdx}{x^2+1}

Answer

LetI=23xx2+1dxLet I=∫^3_2\frac{x}{x^2+1}dx

6xx2+1dx=122xx2+1dx=12log(1+x2)=F(x)6∫\frac{x}{x^2+1}dx=\frac{1}{2}∫\frac{2x}{x^2+1}dx=\frac{1}{2}log(1+x^2)=F(x)

By second fundamental theorem of calculus,we obtain

I=F(3)F(2)I=F(3)-F(2)

=12[log(1+(3)2)log(1+(2)2)]=\frac{1}{2}[log(1+(3)^2)-log(1+(2)^2)]

=12[log(10)log(5)]=\frac{1}{2}[log(10)-log(5)]

=12log(105)=12log2=\frac{1}{2}log(\frac{10}{5})=\frac{1}{2}log2