Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 23dxx21∫^3_2 \frac{dx}{x^2-1}

Answer

Let I=23dxx21∫^3_2 \frac{dx}{x^2-1}

dxx21=12logx1x+1=F(x)∫\frac{dx}{x^2-1}=\frac{1}{2}log|\frac{x-1}{x+1}|=F(x)

By second fundamental theorem of calculus,we obtain

I=F(3)F(2)I=F(3)-F(2)

=12[log313+1log212+1]=\frac{1}{2}[log|\frac{3-1}{3+1}|-log|\frac{2-1}{2+1|}]

=12[log24log133]=\frac{1}{2}[log|\frac{2}{4}|-log\frac{1}{3}3]

=12[log12log13]=\frac{1}{2}[log\frac{1}{2}-log\frac{1}{3}]

=12[log32]=\frac{1}{2}[log\frac{3}{2}]