Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 231xdx∫^3_2 \frac{1}{x}dx

Answer

The correct answer is: =log3log2=log32=log|3|-log|2|=log\frac{3}{2}
Let I=231xdxI=∫^3_2 \frac{1}{x}dx
1xdx=logx=F(x)∫\frac{1}{x}dx=log|x|=F(x)
By second fundamental theorem of calculus,we obtain
I=F(3)F(2)I=F(3)-F(2)
=log3log2=log32=log|3|-log|2|=log\frac{3}{2}