Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 12(4x35x2+6x+9)dx∫^2_1(4x^3-5x^2+6x+9)dx

Answer

LetI=12(4x35x2+6x+9)dxLet I=∫^2_1(4x^3-5x^2+6x+9)dx

(4x35x2+6x+9)dx=4(x44)5(x33)+6(x22)+9(x)∫(4x^3-5x^2+6x+9)dx=4(\frac{x4}{4})-5(\frac{x^3}{3})+6(\frac{x^2}{2})+9(x)

=x45x33+3x2+9x=F(x)=x^4-\frac{5x^3}{3}+3x^2+9x=F(x)

By second fundamental theorem of calculus,we obtain

I=F(2)F(1)I=F(2)-F(1)

I=245.(2)33+3(2)2+9(2)(1)45(1)33+3(1)2+9(1)I={2^4-\frac{5.(2)^3}{3}+3(2)^2+9(2)}-{(1)^4-\frac{5(1)^3}{3}+3(1)^2+9(1)}

=(16403+12+18)(1+533+9)=(16-\frac{40}{3}+12+18)-(1+\frac{5}{3}-3+9)

=16403+12+181+5339=16-\frac{40}{3}+12+18-1+\frac{5}{3}-3-9

=33353=33-\frac{35}{3}

=99353=\frac{99-35}{3}

=643=\frac{64}{3}