Question
Mathematics Question on integral
Evaluate the definite integral: ∫12(4x3−5x2+6x+9)dx
Answer
LetI=∫12(4x3−5x2+6x+9)dx
∫(4x3−5x2+6x+9)dx=4(4x4)−5(3x3)+6(2x2)+9(x)
=x4−35x3+3x2+9x=F(x)
By second fundamental theorem of calculus,we obtain
I=F(2)−F(1)
I=24−35.(2)3+3(2)2+9(2)−(1)4−35(1)3+3(1)2+9(1)
=(16−340+12+18)−(1+35−3+9)
=16−340+12+18−1+35−3−9
=33−335
=399−35
=364