Question
Mathematics Question on integral
Evaluate the definite integral: ∫015x2+12x+3dx
Answer
Let I=∫015x2+12x+3dx
∫5x2+12x+3dx=51∫55x2+12x+3dx
=51∫5x2+110x+15dx
=51∫5x2+110xdx+3∫5x2+11
=51log(5x2+1)+53.511tan−1√51x
=51log(5x2+1)+√53tan−1(√5x)
=F(x)
By second fundamental theorem of calculus,we obtain
I=F(1)−F(0)
={\frac{1}{5}log(5+1)+\frac{3}{√5}tan^{-1}(√5)}$$-\frac{1}{5}log(1)+\frac{3}{√5}tan^{-1}(0)
=51log6+√53tan−1√5