Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 012x+35x2+1dx∫^1_0 \frac{2x+3}{5x^2+1}dx

Answer

Let I=012x+35x2+1dx∫^1_0 \frac{2x+3}{5x^2+1}dx

2x+35x2+1dx=1552x+35x2+1dx∫\frac{2x+3}{5x^2+1}dx=\frac{1}{5}∫5\frac{2x+3}{5x^2+1}dx

=1510x+155x2+1dx=\frac{1}{5}∫\frac{10x+15}{5x^2+1}dx

=1510x5x2+1dx+315x2+1=\frac{1}{5}∫\frac{10x}{5x^2+1}dx+3\int\frac{1}{5x^2+1}

=15log(5x2+1)+35.115tan1x15=\frac{1}{5}log(5x^2+1)+\frac{3}{5}.\frac{1}{\frac{1}{\sqrt5}} tan^{-1}\frac{x}{\frac{1}{√5}}

=15log(5x2+1)+35tan1(5x)=\frac{1}{5}log(5x^2+1)+\frac{3}{√5}tan^{-1}(√5x)

=F(x)=F(x)

By second fundamental theorem of calculus,we obtain

I=F(1)F(0)I=F(1)-F(0)

={\frac{1}{5}log(5+1)+\frac{3}{√5}tan^{-1}(√5)}$$-\frac{1}{5}log(1)+\frac{3}{√5}tan^{-1}(0)

=15log6+35tan15=\frac{1}{5}log6+\frac{3}{√5}tan^{-1}√5