Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π(sin2x2cos2x2)dx∫_0^π(sin^2\frac{x}{2}-cos^2\frac{x}{2})dx

Answer

Let I=0π(sin2x2cos2x2)dx∫_0^π(sin^2\frac{x}{2}-cos^2\frac{x}{2})dx

=0π(cos2x2sin2x2)dx=∫_0^π(cos^2\frac{x}{2}-sin^2\frac{x}{2})dx

=0πcosxdx=-∫_0^πcosx dx

cosxdx=sinx=F(x)∫cosx dx=sin x=F(x)

By second fundamental theorem of calculus,we obtain

I=F(π)F(0)I=F(π)-F(0)

=sinπsin0=sinπ-sin0

=0=0