Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π4(2sec2x+x3+2)dx∫_0^\frac{π}{4}(2sec^2x+x^3+2)dx

Answer

Let I=0π4(2sec2x+x3+2)dx∫_0^\frac{π}{4}(2sec^2x+x^3+2)dx

(2sec2x+x3+2)dx=tanx+x44+2x=F(x)∫(2sec^2x+x^3+2)dx=tanx+\frac{x^4}{4}+2x=F(x)

By second fundamental theorem of calculus,we obtain

I=F(π/4)F(0)I=F(π/4)-F(0)

=(2tanπ4+14(π/4)4+2(π4))(2tan0+0+0)={(2tan\frac{π}{4}+\frac{1}{4}(π/4)4+2(\frac{π}{4}))-(2tan0+0+0)}

=2tanπ4+π445+π2=2tan\frac{π}{4}+\frac{π^4}{4}5+\frac{π}{2}

=2+π2+π41024=2+\frac{π}{2}+\frac{{π^4}}{{1024}}