Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π4tanxdx∫_0^\frac{π}{4} tanxdx

Answer

Let I= 0π4tanxdx∫_0^\frac{π}{4} tanxdx

tanxdx=logcosx=F(x)∫tanxdx=-log|cosx|=F(x)

By second fundamental theorem of calculus,we obtain

I=F(π4)F(0)I=F(\frac{π}{4})-F(0)

=logcosπ4+logcos0=-log|cos\frac{π}{4}|+log|cos0|

=log12+log1=-log|\frac{1}{√2}|+log|1|

=log(2)12=-log(2)\frac{1}{2}

=12log2=\frac{1}{2}log2