Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π2cos2xdx∫_0^\frac{π}{2}cos2xdx

Answer

Let I=0π2cos2xdx∫_0^\frac{π}{2}cos2xdx

cos2xdx=(sin2x2)=F(x)∫cos2xdx=(\frac{sin2x}{2})=F(x)

By second fundamental theorem of calculus,we obtain

I=Fπ2F(0)I=F\frac{π}{2}-F(0)

=12[sin2(π2)sin0]=\frac{1}{2}[sin2(\frac{π}{2})-sin0]

=12[sinπsin0]=\frac{1}{2}[sinπ-sin0]

=12[00]=0=\frac{1}{2}[0-0]=0