Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 0π2sin2xtan1(sinx)dx∫_0^{\frac{π}{2}}sin2x\,tan^{-1}(sinx)dx

Answer

LetI=0π2=sin2xtan1(sinx)dx=0π22sinxcosxtan1(sinx)dxLet I=∫_0^{\frac{π}{2}}=sin2xtan^{-1}(sinx)dx=∫_0^{\frac{π}{2}}2sinx\,cosx\,tan^{-1}(sinx)dx

Also,letsinx=tcosxdx=dtAlso,let\, sinx=t⇒cosxdx=dt

Whenx=0,t=0andwhenx=π2,t=1When\, x=0,t=0\, and\, when\, x=\frac{π}{2},t=1

I=201ttan1(t)dt...(1)⇒I=2∫_0^1t\,tan^{-1}(t)dt...(1)

Considert.tan1tdt=tan1t.tdt[ddt(tan1t)tdt]dtConsider ∫t.tan^{-1}t\,dt=tan^{-1}t.∫t\,dt-∫[\frac{d}{dt}(tan^{-1}t)∫tdt]dt

=tan1t.t2211+t2.t22dt=tan^{-1}t.\frac{t^2}{2}-∫\frac{1}{1+t^2}.\frac{t^2}{2}dt

=t2tan1t212t2+111+t2dt=\frac{t^2tan^{-1}t}{2}-\frac{1}{2}∫t^2+1-\frac{1}{1+t^2}dt

=t2tan12121dt+1211+t2dt=\frac{t^2tan^{-1}}{2}-\frac{1}{2}∫1dt+\frac{1}{2}∫\frac{1}{1+t^2}dt

=t2tan1212.t+12tan1t]=\frac{t^2tan^{-1}}{2}-\frac{1}{2}.t+\frac{1}{2}tan^{-1}t]

01t.tan1tdt=[t2.tan1t2t2+12tan1t]01⇒∫_0^1t.tan^{-1}t\,dt=\bigg[\frac{t^2.tan^{-1}t}{2}-\frac{t}{2}+\frac{1}{2}tan^{-1}t\bigg]_0^1

=12[π41+π4]=\frac{1}{2}[\frac{π}{4}-1+\frac{\pi}{4}]

=12[π21]=π412=\frac{1}{2}[\frac{π}{2}-1]=\frac{π}4-\frac{1}{2}

From equation(1),we obtain

I=2[π412]=π21I=2[\frac{π}{4}-\frac{1}{2}]=\frac{π}{2}-1