Question
Mathematics Question on integral
Evaluate the definite integral: ∫02πsin2xtan−1(sinx)dx
Answer
LetI=∫02π=sin2xtan−1(sinx)dx=∫02π2sinxcosxtan−1(sinx)dx
Also,letsinx=t⇒cosxdx=dt
Whenx=0,t=0andwhenx=2π,t=1
⇒I=2∫01ttan−1(t)dt...(1)
Consider∫t.tan−1tdt=tan−1t.∫tdt−∫[dtd(tan−1t)∫tdt]dt
=tan−1t.2t2−∫1+t21.2t2dt
=2t2tan−1t−21∫t2+1−1+t21dt
=2t2tan−1−21∫1dt+21∫1+t21dt
=2t2tan−1−21.t+21tan−1t]
⇒∫01t.tan−1tdt=[2t2.tan−1t−2t+21tan−1t]01
=21[4π−1+4π]
=21[2π−1]=4π−21
From equation(1),we obtain
I=2[4π−21]=2π−1