Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 026x+3x2+4dx∫_0^2\frac{6x+3}{x^2+4} dx

Answer

Let I=026x+3x2+4dx∫_0^2\frac{6x+3}{x^2+4} dx

∫_0^2\frac{6x+3}{x^2+4} dx=3$$∫\frac{2x+1}{x^2+4}dx

∫\frac{2x+1}{x^2+4}dx+3$$∫\frac{1}{x^2+4}dx

=3log(x2+4)+32tan1x2=F(x)=3log(x^2+4)+\frac{3}{2}tan^{-1}\frac{x}{2}=F(x)

By second fundamental theorem of calculus,we obtain

I=F(2)F(0)I=F(2)-F(0)

=3log(22+4)+32tan1(22)3log(0+4)+32tan1(02)={3log(2^2+4)+\frac{3}{2}tan^{-1}(\frac{2}{2})}-{3log(0+4)+\frac{3}{2}tan^{-1}(\frac{0}{2}})

=3log8+32tan13log432tan10=3log8+\frac{3}{2}tan^{-1}-3log4-\frac{3}{2}tan^{-1} 0

=3log8+32(π4)3log40=3log8+\frac{3}{2}(\frac{π}{4})-3log4-0

=3log(84)+3π8=3log(\frac{8}{4})+\frac{3π}{8}

=3log2+3π8=3log2+\frac{3π}{8}