Question
Mathematics Question on integral
Evaluate the definite integral: ∫01(xex+sin4πx)dx
Answer
Let I=∫01(xex+sin4πx)dx
∫(xex+sin4πx)dx=x∫exdx−∫(dxd)∫exdxdx+−4πcos4πx
=xex−∫exdx−π4πcos4x
=xex−ex−π4πcos4x
=F(x)
By second fundamental theorem of calculus,we obtain
I=F(1)−F(0)
=(1.e1−e1−π4cos4π)−(0.e°−e°−π4cos0)
=e−e−π4(√21)+1+π4
=1+π4−π2√2