Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 01(xex+sinπx4)dx∫_0^1(xe^x+sin\frac{πx}{4})dx

Answer

Let I=01(xex+sinπx4)dx∫_0^1(xe^x+sin\frac{πx}{4})dx

(xex+sinπx4)dx=xexdx(ddx)exdxdx+cosπx4π4∫(xe^x+sin\frac{πx}{4})dx=x∫e^xdx-∫{(\frac{d}{dx})∫e^xdx}dx+{-\frac{cos\frac{πx}{4}}{\frac{π}{4}}}

=xexexdx4ππcosx4=xe^x-∫e^xdx-\frac{4π}{π}cos\frac{x}{4}

=xexex4ππcosx4=xe^x-e^x-\frac{4π}{π}cos\frac{x}{4}

=F(x)=F(x)

By second fundamental theorem of calculus,we obtain

I=F(1)F(0)I=F(1)-F(0)

=(1.e1e14πcosπ4)(0.e°e°4πcos0)=(1.e^1-e^1-\frac{4}{π}cos\frac{π}{4})-(0.e°-e°-\frac{4}{π}cos0)

=ee4π(12)+1+4π=e-e-\frac{4}{π}(\frac{1}{√2})+1+\frac{4}{π}

=1+4π22π=1+\frac{4}{π}-\frac{2√2}{π}