Solveeit Logo

Question

Mathematics Question on integral

Evaluate the definite integral: 015x2x2+4x+3∫_0^1\frac{5x^2}{x2+4x+3}

Answer

Let I=015x2x2+4x+3∫_0^1\frac{5x^2}{x^2+4x+3}

Dividing5x2byx2+4x+3,weobtainDividing\, 5x^2\, by\, x^2+4x+3,we\, obtain

I=12520x+15x2+4x+3dxI=∫_1^2-5\frac{20x+15}{x^2+4x+3}dx

=125dx1220x+15x2+4x+3dx=∫_1^2 5dx-\int_1^2\frac{20x+15}{x^2+4x+3}dx

=[5x]121220x+15x2+4x+3dx=[5x]_1^2-∫^2_1\frac{20x+15}{x2+4x+3}dx

I=5I1,whereI=1220x+15x2+4x+3...(1)I=5-I_1,where I=∫_1^2\frac{20x+15}{x^2+4x+3}...(1)

Consider,I1=1220x+15x2+4x+8dxConsider,I_1=∫_1^2\frac{20x+15}{x^2+4x+8}dx

Let20x+15=Addx(x2+4x+3)+BLet\, 20x+15=A\frac{d}{dx}(x^2+4x+3)+B

=2Ax+(4A+B)=2Ax+(4A+B)

Equating the coefficients of x and constant term,we obtain

A=10andB=25A=10 and B=-25

I1=10122x+4x2+4x+3dx25121dxx2+4x+3⇒I_1=10 ∫_1^2\frac{2x+4}{x^2+4x+3}dx-25 ∫_1^21\frac{dx}{x^2+4x+3}

Letx2+4x+3=tLet\, x^2+4x+3=t

(2x+4)dx=dt⇒(2x+4)dx=dt

I1=10dtt25dx(x+2)212⇒I_1=10∫\frac{dt}{t}-25∫\frac{dx}{(x+2)^2-1^2}

=10logt25[12log(x+21x+2+1)]=10logt-25[\frac{1}{2}log(\frac{x+2-1}{x+2+1})]

=[10log(x2+4x+3)]1225[12log(x+1x+3)]12=[10log(x^2+4x+3)]_1^2-25[\frac{1}{2}log(\frac{x+1}{x+3})]_1^2

=[10+25/2]log5+[1025/2]log4+[10252]log3+[10+252]log2=[10+25/2]log5+[-10-25/2]log4+[10-\frac{25}{2}]log3+[-10+\frac{25}{2}]log2

=452log5452log452log3+52log2=\frac{45}{2}log5-\frac{45}{2}log4-\frac{5}{2}log3+\frac{5}{2}log2

=452log5452log32=\frac{45}{2}log\frac{5}{4}-\frac{5}{2}log\frac{3}{2}

SubstitutingthevalueofI1in(1),weobtainSubstituting the value of I1 in(1),we obtain

I=5[452log5452log32]I=5-[\frac{45}{2}log\frac{5}{4}-\frac{5}{2}log\frac{3}{2}]

=552[9log54log32]=5-\frac{5}{2}[9log\frac{5}{4}-log\frac{3}{2}]