Question
Mathematics Question on integral
Evaluate the definite integral: ∫01x2+4x+35x2
Answer
Let I=∫01x2+4x+35x2
Dividing5x2byx2+4x+3,weobtain
I=∫12−5x2+4x+320x+15dx
=∫125dx−∫12x2+4x+320x+15dx
=[5x]12−∫12x2+4x+320x+15dx
I=5−I1,whereI=∫12x2+4x+320x+15...(1)
Consider,I1=∫12x2+4x+820x+15dx
Let20x+15=Adxd(x2+4x+3)+B
=2Ax+(4A+B)
Equating the coefficients of x and constant term,we obtain
A=10andB=−25
⇒I1=10∫12x2+4x+32x+4dx−25∫121x2+4x+3dx
Letx2+4x+3=t
⇒(2x+4)dx=dt
⇒I1=10∫tdt−25∫(x+2)2−12dx
=10logt−25[21log(x+2+1x+2−1)]
=[10log(x2+4x+3)]12−25[21log(x+3x+1)]12
=[10+25/2]log5+[−10−25/2]log4+[10−225]log3+[−10+225]log2
=245log5−245log4−25log3+25log2
=245log45−25log23
SubstitutingthevalueofI1in(1),weobtain
I=5−[245log45−25log23]
=5−25[9log45−log23]